#practiceLinkDiv { mostrar: ninguno !importante; }Dado un numero natural norte la tarea es encontrar la suma de los divisores de todos los divisores de n.
tutorial de selenio
Ejemplos:
Input : n = 54 Output : 232 Divisors of 54 = 1 2 3 6 9 18 27 54. Sum of divisors of 1 2 3 6 9 18 27 54 are 1 3 4 12 13 39 40 120 respectively. Sum of divisors of all the divisors of 54 = 1 + 3 + 4 + 12 + 13 + 39 + 40 + 120 = 232. Input : n = 10 Output : 28 Divisors of 10 are 1 2 5 10 Sums of divisors of divisors are 1 3 6 18. Overall sum = 1 + 3 + 6 + 18 = 28Recommended Practice encontrar la suma de divisores ¡Pruébalo!
Usando el hecho de que cualquier número norte se puede expresar como producto de factores primos norte =p1k1xp2k2x... donde p1pag2... son números primos.
Todos los divisores de n se pueden expresar como p.1axp2bx... donde 0<= a <= k1 and 0 <= b <= k2.
Ahora la suma de los divisores será la suma de todas las potencias de p.1- pag1pag11.... pag1k1multiplicado por todo el poder de p2- pag2pag21.... pag2k1
Suma del divisor de n
= (pag1xp2) + (pag11xp2) +.....+ (p.1k1xp2) +....+ (p.1xp21) + (pag11xp21) +.....+ (p.1k1xp21) +.......+
(pag1xp2k2) + (pag11xp2k2) +......+ (p.1k1xp2k2).
= (pag1+p11+...+ p1k1) xp2+ (pag.1+p11+...+ p1k1) xp21+.......+ (p.1+p11+...+ p1k1) xp2k2.
= (pag1+p11+...+ p1k1) x (pag2+p21+...+ p2k2).
Ahora los divisores de cualquier papara p como primo son ppag1...... paga. Y la suma de divisores será (p(un+1)- 1)/(p -1) déjelo definir por f(p).
Entonces la suma de los divisores de todos los divisores será
= (f(p1) + f(p11) +...+ f(pag1k1)) x (f(pag2) + f(p21) +...+ f(pag2k2)).
Entonces, dado un número n, mediante factorización prima podemos encontrar la suma de los divisores de todos los divisores. Pero en este problema se nos da que n es producto del elemento de la matriz. Entonces encuentre la factorización prima de cada elemento y usando el hecho de abx undo= unb+c.
A continuación se muestra la implementación de este enfoque:
C++// C++ program to find sum of divisors of all // the divisors of a natural number. #include using namespace std; // Returns sum of divisors of all the divisors // of n int sumDivisorsOfDivisors(int n) { // Calculating powers of prime factors and // storing them in a map mp[]. map<int int> mp; for (int j=2; j<=sqrt(n); j++) { int count = 0; while (n%j == 0) { n /= j; count++; } if (count) mp[j] = count; } // If n is a prime number if (n != 1) mp[n] = 1; // For each prime factor calculating (p^(a+1)-1)/(p-1) // and adding it to answer. int ans = 1; for (auto it : mp) { int pw = 1; int sum = 0; for (int i=it.second+1; i>=1; i--) { sum += (i*pw); pw *= it.first; } ans *= sum; } return ans; } // Driven Program int main() { int n = 10; cout << sumDivisorsOfDivisors(n); return 0; }
Java // Java program to find sum of divisors of all // the divisors of a natural number. import java.util.HashMap; class GFG { // Returns sum of divisors of all the divisors // of n public static int sumDivisorsOfDivisors(int n) { // Calculating powers of prime factors and // storing them in a map mp[]. HashMap<Integer Integer> mp = new HashMap<>(); for (int j = 2; j <= Math.sqrt(n); j++) { int count = 0; while (n % j == 0) { n /= j; count++; } if (count != 0) mp.put(j count); } // If n is a prime number if (n != 1) mp.put(n 1); // For each prime factor calculating (p^(a+1)-1)/(p-1) // and adding it to answer. int ans = 1; for (HashMap.Entry<Integer Integer> entry : mp.entrySet()) { int pw = 1; int sum = 0; for (int i = entry.getValue() + 1; i >= 1; i--) { sum += (i * pw); pw *= entry.getKey(); } ans *= sum; } return ans; } // Driver code public static void main(String[] args) { int n = 10; System.out.println(sumDivisorsOfDivisors(n)); } } // This code is contributed by // sanjeev2552
Python3 # Python3 program to find sum of divisors # of all the divisors of a natural number. import math as mt # Returns sum of divisors of all # the divisors of n def sumDivisorsOfDivisors(n): # Calculating powers of prime factors # and storing them in a map mp[]. mp = dict() for j in range(2 mt.ceil(mt.sqrt(n))): count = 0 while (n % j == 0): n //= j count += 1 if (count): mp[j] = count # If n is a prime number if (n != 1): mp[n] = 1 # For each prime factor calculating # (p^(a+1)-1)/(p-1) and adding it to answer. ans = 1 for it in mp: pw = 1 summ = 0 for i in range(mp[it] + 1 0 -1): summ += (i * pw) pw *= it ans *= summ return ans # Driver Code n = 10 print(sumDivisorsOfDivisors(n)) # This code is contributed # by mohit kumar 29
C# // C# program to find sum of divisors of all // the divisors of a natural number. using System; using System.Collections.Generic; class GFG { // Returns sum of divisors of // all the divisors of n public static int sumDivisorsOfDivisors(int n) { // Calculating powers of prime factors and // storing them in a map mp[]. Dictionary<int int> mp = new Dictionary<int int>(); for (int j = 2; j <= Math.Sqrt(n); j++) { int count = 0; while (n % j == 0) { n /= j; count++; } if (count != 0) mp.Add(j count); } // If n is a prime number if (n != 1) mp.Add(n 1); // For each prime factor // calculating (p^(a+1)-1)/(p-1) // and adding it to answer. int ans = 1; foreach(KeyValuePair<int int> entry in mp) { int pw = 1; int sum = 0; for (int i = entry.Value + 1; i >= 1; i--) { sum += (i * pw); pw = entry.Key; } ans *= sum; } return ans; } // Driver code public static void Main(String[] args) { int n = 10; Console.WriteLine(sumDivisorsOfDivisors(n)); } } // This code is contributed // by Princi Singh
JavaScript <script> // Javascript program to find sum of divisors of all // the divisors of a natural number. // Returns sum of divisors of all the divisors // of n function sumDivisorsOfDivisors(n) { // Calculating powers of prime factors and // storing them in a map mp[]. let mp = new Map(); for (let j = 2; j <= Math.sqrt(n); j++) { let count = 0; while (n % j == 0) { n = Math.floor(n/j); count++; } if (count != 0) mp.set(j count); } // If n is a prime number if (n != 1) mp.set(n 1); // For each prime factor calculating (p^(a+1)-1)/(p-1) // and adding it to answer. let ans = 1; for (let [key value] of mp.entries()) { let pw = 1; let sum = 0; for (let i = value + 1; i >= 1; i--) { sum += (i * pw); pw = key; } ans *= sum; } return ans; } // Driver code let n = 10; document.write(sumDivisorsOfDivisors(n)); // This code is contributed by patel2127 </script>
Producción:
28
Complejidad del tiempo: O (? norte iniciar sesión norte)
Espacio Auxiliar: En)
Optimizaciones:
Para los casos en los que hay varias entradas para las que necesitamos encontrar el valor que podemos usar Tamiz de Eratóstenes como se discutió en este correo.