logo

Problema de vendedor ambulante utilizando sucursal y límite

Dado un conjunto de ciudades y distancia entre cada par de ciudades, el problema es encontrar el recorrido más corto posible que visita cada ciudad exactamente una vez y regresa al punto de partida.
 

Euler1' title=




Por ejemplo, considere el gráfico que se muestra en la figura en el lado derecho. Un recorrido en cucharaditas en el gráfico es 0-1-3-2-0. El costo del recorrido es 10+25+30+15, que es 80.
Hemos discutido las siguientes soluciones 
1) Programación ingenua y dinámica  
2) Solución aproximada usando MST
  
 
Rama y solución unida  
Como se ve en los artículos anteriores en el método de rama y unión para el nodo actual en el árbol, calculamos un límite en la mejor solución posible que podamos obtener si bajamos este nodo. Si el límite en la mejor solución posible en sí es peor que la mejor actual (mejor calculada hasta ahora), entonces ignoramos el subárbol enraizado con el nodo. 
Tenga en cuenta que el costo a través de un nodo incluye dos costos. 
1) Costo de alcanzar el nodo desde la raíz (cuando llegamos a un nodo, tenemos este costo calculado) 
2) Costo de alcanzar una respuesta del nodo actual a una hoja (calculamos un límite en este costo para decidir si ignorar el subárbol con este nodo o no).
 

  • En casos de un problema de maximización Un límite superior nos dice la solución máxima posible si seguimos el nodo dado. Por ejemplo en 0/1 mochila usamos un enfoque codicioso para encontrar un límite superior .
  • En casos de un problema de minimización Un límite inferior nos dice la solución mínima posible si seguimos el nodo dado. Por ejemplo en Problema de tarea de trabajo Obtenemos un límite inferior al asignar un trabajo de menor costo a un trabajador.


A la rama y en el límite, la parte desafiante es encontrar una forma de calcular un límite en la mejor solución posible. A continuación se muestra una idea utilizada para calcular límites para el problema de los vendedores viajeros.
El costo de cualquier recorrido se puede escribir como se muestra a continuación.
 

Cost of a tour T = (1/2) * ? (Sum of cost of two edges adjacent to u and in the tour T) where u ? V For every vertex u if we consider two edges through it in T and sum their costs. The overall sum for all vertices would be twice of cost of tour T (We have considered every edge twice.) (Sum of two tour edges adjacent to u) >= (sum of minimum weight two edges adjacent to u) Cost of any tour >= 1/2) * ? (Sum of cost of two minimum weight edges adjacent to u) where u ? V


Por ejemplo, considere el gráfico mostrado anterior. A continuación hay un costo mínimo dos bordes adyacentes a cada nodo. 
 



Node Least cost edges Total cost 0 (0 1) (0 2) 25 1 (0 1) (1 3) 35 2 (0 2) (2 3) 45 3 (0 3) (1 3) 45 Thus a lower bound on the cost of any tour = 1/2(25 + 35 + 45 + 45) = 75 Refer   this   for one more example.


Ahora tenemos una idea sobre el cálculo del límite inferior. Veamos cómo aplicarlo en el árbol de búsqueda de espacio de estado. Comenzamos a enumerar todos los nodos posibles (preferiblemente en orden lexicográfico)
1. El nodo raíz: Sin pérdida de generalidad, suponemos que comenzamos en el vértice '0' para el cual se ha calculado el límite inferior anteriormente.
Lidiar con el nivel 2: El siguiente nivel enumera todos los vértices posibles a los que podemos ir (teniendo en cuenta que en cualquier camino un vértice tiene que ocurrir solo una vez) que son 1 2 3 ... n (tenga en cuenta que el gráfico está completo). Considere que estamos calculando para el vértice 1 ya que nos mudamos de 0 a 1 Nuestro recorrido ha incluido el borde 0-1. Esto nos permite hacer los cambios necesarios en el límite inferior de la raíz. 
 

Lower Bound for vertex 1 = Old lower bound - ((minimum edge cost of 0 + minimum edge cost of 1) / 2) + (edge cost 0-1)


¿Cómo funciona? Para incluir el borde 0-1, agregamos el costo de borde de 0-1 y restamos un peso de borde de tal manera que el límite inferior permanece lo más apretado posible, que sería la suma de los bordes mínimos de 0 y 1 dividido por 2. Claramente, el borde restado no puede ser menor que esto.
Lidiar con otros niveles: A medida que pasamos al siguiente nivel, enumeramos nuevamente todos los vértices posibles. Para el caso anterior que va más allá después de 1, revisamos por 2 3 4 ... n. 
Considere el límite inferior para 2 a medida que avanzamos de 1 a 1, incluimos el borde 1-2 al recorrido y alterar el nuevo límite inferior para este nodo.
 

Lower bound(2) = Old lower bound - ((second minimum edge cost of 1 + minimum edge cost of 2)/2) + edge cost 1-2)


Nota: El único cambio en la fórmula es que esta vez hemos incluido el segundo costo de borde mínimo para 1 porque el costo de borde mínimo ya se ha resta en nivel anterior. 
 



C++
// C++ program to solve Traveling Salesman Problem // using Branch and Bound. #include    using namespace std; const int N = 4; // final_path[] stores the final solution ie the // path of the salesman. int final_path[N+1]; // visited[] keeps track of the already visited nodes // in a particular path bool visited[N]; // Stores the final minimum weight of shortest tour. int final_res = INT_MAX; // Function to copy temporary solution to // the final solution void copyToFinal(int curr_path[]) {  for (int i=0; i<N; i++)  final_path[i] = curr_path[i];  final_path[N] = curr_path[0]; } // Function to find the minimum edge cost // having an end at the vertex i int firstMin(int adj[N][N] int i) {  int min = INT_MAX;  for (int k=0; k<N; k++)  if (adj[i][k]<min && i != k)  min = adj[i][k];  return min; } // function to find the second minimum edge cost // having an end at the vertex i int secondMin(int adj[N][N] int i) {  int first = INT_MAX second = INT_MAX;  for (int j=0; j<N; j++)  {  if (i == j)  continue;  if (adj[i][j] <= first)  {  second = first;  first = adj[i][j];  }  else if (adj[i][j] <= second &&  adj[i][j] != first)  second = adj[i][j];  }  return second; } // function that takes as arguments: // curr_bound -> lower bound of the root node // curr_weight-> stores the weight of the path so far // level-> current level while moving in the search // space tree // curr_path[] -> where the solution is being stored which // would later be copied to final_path[] void TSPRec(int adj[N][N] int curr_bound int curr_weight  int level int curr_path[]) {  // base case is when we have reached level N which  // means we have covered all the nodes once  if (level==N)  {  // check if there is an edge from last vertex in  // path back to the first vertex  if (adj[curr_path[level-1]][curr_path[0]] != 0)  {  // curr_res has the total weight of the  // solution we got  int curr_res = curr_weight +  adj[curr_path[level-1]][curr_path[0]];  // Update final result and final path if  // current result is better.  if (curr_res < final_res)  {  copyToFinal(curr_path);  final_res = curr_res;  }  }  return;  }  // for any other level iterate for all vertices to  // build the search space tree recursively  for (int i=0; i<N; i++)  {  // Consider next vertex if it is not same (diagonal  // entry in adjacency matrix and not visited  // already)  if (adj[curr_path[level-1]][i] != 0 &&  visited[i] == false)  {  int temp = curr_bound;  curr_weight += adj[curr_path[level-1]][i];  // different computation of curr_bound for  // level 2 from the other levels  if (level==1)  curr_bound -= ((firstMin(adj curr_path[level-1]) +  firstMin(adj i))/2);  else  curr_bound -= ((secondMin(adj curr_path[level-1]) +  firstMin(adj i))/2);  // curr_bound + curr_weight is the actual lower bound  // for the node that we have arrived on  // If current lower bound < final_res we need to explore  // the node further  if (curr_bound + curr_weight < final_res)  {  curr_path[level] = i;  visited[i] = true;  // call TSPRec for the next level  TSPRec(adj curr_bound curr_weight level+1  curr_path);  }  // Else we have to prune the node by resetting  // all changes to curr_weight and curr_bound  curr_weight -= adj[curr_path[level-1]][i];  curr_bound = temp;  // Also reset the visited array  memset(visited false sizeof(visited));  for (int j=0; j<=level-1; j++)  visited[curr_path[j]] = true;  }  } } // This function sets up final_path[]  void TSP(int adj[N][N]) {  int curr_path[N+1];  // Calculate initial lower bound for the root node  // using the formula 1/2 * (sum of first min +  // second min) for all edges.  // Also initialize the curr_path and visited array  int curr_bound = 0;  memset(curr_path -1 sizeof(curr_path));  memset(visited 0 sizeof(curr_path));  // Compute initial bound  for (int i=0; i<N; i++)  curr_bound += (firstMin(adj i) +  secondMin(adj i));  // Rounding off the lower bound to an integer  curr_bound = (curr_bound&1)? curr_bound/2 + 1 :  curr_bound/2;  // We start at vertex 1 so the first vertex  // in curr_path[] is 0  visited[0] = true;  curr_path[0] = 0;  // Call to TSPRec for curr_weight equal to  // 0 and level 1  TSPRec(adj curr_bound 0 1 curr_path); } // Driver code int main() {  //Adjacency matrix for the given graph  int adj[N][N] = { {0 10 15 20}  {10 0 35 25}  {15 35 0 30}  {20 25 30 0}  };  TSP(adj);  printf('Minimum cost : %dn' final_res);  printf('Path Taken : ');  for (int i=0; i<=N; i++)  printf('%d ' final_path[i]);  return 0; } 
Java
// Java program to solve Traveling Salesman Problem // using Branch and Bound. import java.util.*; class GFG {    static int N = 4;  // final_path[] stores the final solution ie the  // path of the salesman.  static int final_path[] = new int[N + 1];  // visited[] keeps track of the already visited nodes  // in a particular path  static boolean visited[] = new boolean[N];  // Stores the final minimum weight of shortest tour.  static int final_res = Integer.MAX_VALUE;  // Function to copy temporary solution to  // the final solution  static void copyToFinal(int curr_path[])  {  for (int i = 0; i < N; i++)  final_path[i] = curr_path[i];  final_path[N] = curr_path[0];  }  // Function to find the minimum edge cost  // having an end at the vertex i  static int firstMin(int adj[][] int i)  {  int min = Integer.MAX_VALUE;  for (int k = 0; k < N; k++)  if (adj[i][k] < min && i != k)  min = adj[i][k];  return min;  }  // function to find the second minimum edge cost  // having an end at the vertex i  static int secondMin(int adj[][] int i)  {  int first = Integer.MAX_VALUE second = Integer.MAX_VALUE;  for (int j=0; j<N; j++)  {  if (i == j)  continue;  if (adj[i][j] <= first)  {  second = first;  first = adj[i][j];  }  else if (adj[i][j] <= second &&  adj[i][j] != first)  second = adj[i][j];  }  return second;  }  // function that takes as arguments:  // curr_bound -> lower bound of the root node  // curr_weight-> stores the weight of the path so far  // level-> current level while moving in the search  // space tree  // curr_path[] -> where the solution is being stored which  // would later be copied to final_path[]  static void TSPRec(int adj[][] int curr_bound int curr_weight  int level int curr_path[])  {  // base case is when we have reached level N which  // means we have covered all the nodes once  if (level == N)  {  // check if there is an edge from last vertex in  // path back to the first vertex  if (adj[curr_path[level - 1]][curr_path[0]] != 0)  {  // curr_res has the total weight of the  // solution we got  int curr_res = curr_weight +  adj[curr_path[level-1]][curr_path[0]];    // Update final result and final path if  // current result is better.  if (curr_res < final_res)  {  copyToFinal(curr_path);  final_res = curr_res;  }  }  return;  }  // for any other level iterate for all vertices to  // build the search space tree recursively  for (int i = 0; i < N; i++)  {  // Consider next vertex if it is not same (diagonal  // entry in adjacency matrix and not visited  // already)  if (adj[curr_path[level-1]][i] != 0 &&  visited[i] == false)  {  int temp = curr_bound;  curr_weight += adj[curr_path[level - 1]][i];  // different computation of curr_bound for  // level 2 from the other levels  if (level==1)  curr_bound -= ((firstMin(adj curr_path[level - 1]) +  firstMin(adj i))/2);  else  curr_bound -= ((secondMin(adj curr_path[level - 1]) +  firstMin(adj i))/2);  // curr_bound + curr_weight is the actual lower bound  // for the node that we have arrived on  // If current lower bound < final_res we need to explore  // the node further  if (curr_bound + curr_weight < final_res)  {  curr_path[level] = i;  visited[i] = true;  // call TSPRec for the next level  TSPRec(adj curr_bound curr_weight level + 1  curr_path);  }  // Else we have to prune the node by resetting  // all changes to curr_weight and curr_bound  curr_weight -= adj[curr_path[level-1]][i];  curr_bound = temp;  // Also reset the visited array  Arrays.fill(visitedfalse);  for (int j = 0; j <= level - 1; j++)  visited[curr_path[j]] = true;  }  }  }  // This function sets up final_path[]   static void TSP(int adj[][])  {  int curr_path[] = new int[N + 1];  // Calculate initial lower bound for the root node  // using the formula 1/2 * (sum of first min +  // second min) for all edges.  // Also initialize the curr_path and visited array  int curr_bound = 0;  Arrays.fill(curr_path -1);  Arrays.fill(visited false);  // Compute initial bound  for (int i = 0; i < N; i++)  curr_bound += (firstMin(adj i) +  secondMin(adj i));  // Rounding off the lower bound to an integer  curr_bound = (curr_bound==1)? curr_bound/2 + 1 :  curr_bound/2;  // We start at vertex 1 so the first vertex  // in curr_path[] is 0  visited[0] = true;  curr_path[0] = 0;  // Call to TSPRec for curr_weight equal to  // 0 and level 1  TSPRec(adj curr_bound 0 1 curr_path);  }    // Driver code  public static void main(String[] args)   {  //Adjacency matrix for the given graph  int adj[][] = {{0 10 15 20}  {10 0 35 25}  {15 35 0 30}  {20 25 30 0} };  TSP(adj);  System.out.printf('Minimum cost : %dn' final_res);  System.out.printf('Path Taken : ');  for (int i = 0; i <= N; i++)   {  System.out.printf('%d ' final_path[i]);  }  } } /* This code contributed by PrinciRaj1992 */ 
Python3
# Python3 program to solve  # Traveling Salesman Problem using  # Branch and Bound. import math maxsize = float('inf') # Function to copy temporary solution # to the final solution def copyToFinal(curr_path): final_path[:N + 1] = curr_path[:] final_path[N] = curr_path[0] # Function to find the minimum edge cost  # having an end at the vertex i def firstMin(adj i): min = maxsize for k in range(N): if adj[i][k] < min and i != k: min = adj[i][k] return min # function to find the second minimum edge  # cost having an end at the vertex i def secondMin(adj i): first second = maxsize maxsize for j in range(N): if i == j: continue if adj[i][j] <= first: second = first first = adj[i][j] elif(adj[i][j] <= second and adj[i][j] != first): second = adj[i][j] return second # function that takes as arguments: # curr_bound -> lower bound of the root node # curr_weight-> stores the weight of the path so far # level-> current level while moving # in the search space tree # curr_path[] -> where the solution is being stored # which would later be copied to final_path[] def TSPRec(adj curr_bound curr_weight level curr_path visited): global final_res # base case is when we have reached level N  # which means we have covered all the nodes once if level == N: # check if there is an edge from # last vertex in path back to the first vertex if adj[curr_path[level - 1]][curr_path[0]] != 0: # curr_res has the total weight # of the solution we got curr_res = curr_weight + adj[curr_path[level - 1]] [curr_path[0]] if curr_res < final_res: copyToFinal(curr_path) final_res = curr_res return # for any other level iterate for all vertices # to build the search space tree recursively for i in range(N): # Consider next vertex if it is not same  # (diagonal entry in adjacency matrix and  # not visited already) if (adj[curr_path[level-1]][i] != 0 and visited[i] == False): temp = curr_bound curr_weight += adj[curr_path[level - 1]][i] # different computation of curr_bound  # for level 2 from the other levels if level == 1: curr_bound -= ((firstMin(adj curr_path[level - 1]) + firstMin(adj i)) / 2) else: curr_bound -= ((secondMin(adj curr_path[level - 1]) + firstMin(adj i)) / 2) # curr_bound + curr_weight is the actual lower bound  # for the node that we have arrived on. # If current lower bound < final_res  # we need to explore the node further if curr_bound + curr_weight < final_res: curr_path[level] = i visited[i] = True # call TSPRec for the next level TSPRec(adj curr_bound curr_weight level + 1 curr_path visited) # Else we have to prune the node by resetting  # all changes to curr_weight and curr_bound curr_weight -= adj[curr_path[level - 1]][i] curr_bound = temp # Also reset the visited array visited = [False] * len(visited) for j in range(level): if curr_path[j] != -1: visited[curr_path[j]] = True # This function sets up final_path def TSP(adj): # Calculate initial lower bound for the root node  # using the formula 1/2 * (sum of first min +  # second min) for all edges. Also initialize the  # curr_path and visited array curr_bound = 0 curr_path = [-1] * (N + 1) visited = [False] * N # Compute initial bound for i in range(N): curr_bound += (firstMin(adj i) + secondMin(adj i)) # Rounding off the lower bound to an integer curr_bound = math.ceil(curr_bound / 2) # We start at vertex 1 so the first vertex  # in curr_path[] is 0 visited[0] = True curr_path[0] = 0 # Call to TSPRec for curr_weight  # equal to 0 and level 1 TSPRec(adj curr_bound 0 1 curr_path visited) # Driver code # Adjacency matrix for the given graph adj = [[0 10 15 20] [10 0 35 25] [15 35 0 30] [20 25 30 0]] N = 4 # final_path[] stores the final solution  # i.e. the // path of the salesman. final_path = [None] * (N + 1) # visited[] keeps track of the already # visited nodes in a particular path visited = [False] * N # Stores the final minimum weight # of shortest tour. final_res = maxsize TSP(adj) print('Minimum cost :' final_res) print('Path Taken : ' end = ' ') for i in range(N + 1): print(final_path[i] end = ' ') # This code is contributed by ng24_7 
C#
// C# program to solve Traveling Salesman Problem // using Branch and Bound. using System; public class GFG {  static int N = 4;  // final_path[] stores the final solution ie the  // path of the salesman.  static int[] final_path = new int[N + 1];  // visited[] keeps track of the already visited nodes  // in a particular path  static bool[] visited = new bool[N];  // Stores the final minimum weight of shortest tour.  static int final_res = Int32.MaxValue;  // Function to copy temporary solution to  // the final solution  static void copyToFinal(int[] curr_path)  {  for (int i = 0; i < N; i++)  final_path[i] = curr_path[i];  final_path[N] = curr_path[0];  }  // Function to find the minimum edge cost  // having an end at the vertex i  static int firstMin(int[ ] adj int i)  {  int min = Int32.MaxValue;  for (int k = 0; k < N; k++)  if (adj[i k] < min && i != k)  min = adj[i k];  return min;  }  // function to find the second minimum edge cost  // having an end at the vertex i  static int secondMin(int[ ] adj int i)  {  int first = Int32.MaxValue second = Int32.MaxValue;  for (int j = 0; j < N; j++) {  if (i == j)  continue;  if (adj[i j] <= first) {  second = first;  first = adj[i j];  }  else if (adj[i j] <= second  && adj[i j] != first)  second = adj[i j];  }  return second;  }  // function that takes as arguments:  // curr_bound -> lower bound of the root node  // curr_weight-> stores the weight of the path so far  // level-> current level while moving in the search  // space tree  // curr_path[] -> where the solution is being stored  // which  // would later be copied to final_path[]  static void TSPRec(int[ ] adj int curr_bound  int curr_weight int level  int[] curr_path)  {  // base case is when we have reached level N which  // means we have covered all the nodes once  if (level == N) {  // check if there is an edge from last vertex in  // path back to the first vertex  if (adj[curr_path[level - 1] curr_path[0]]  != 0) {  // curr_res has the total weight of the  // solution we got  int curr_res = curr_weight  + adj[curr_path[level - 1]  curr_path[0]];  // Update final result and final path if  // current result is better.  if (curr_res < final_res) {  copyToFinal(curr_path);  final_res = curr_res;  }  }  return;  }  // for any other level iterate for all vertices to  // build the search space tree recursively  for (int i = 0; i < N; i++) {  // Consider next vertex if it is not same  // (diagonal entry in adjacency matrix and not  // visited already)  if (adj[curr_path[level - 1] i] != 0  && visited[i] == false) {  int temp = curr_bound;  curr_weight += adj[curr_path[level - 1] i];  // different computation of curr_bound for  // level 2 from the other levels  if (level == 1)  curr_bound  -= ((firstMin(adj  curr_path[level - 1])  + firstMin(adj i))  / 2);  else  curr_bound  -= ((secondMin(adj  curr_path[level - 1])  + firstMin(adj i))  / 2);  // curr_bound + curr_weight is the actual  // lower bound for the node that we have  // arrived on If current lower bound <  // final_res we need to explore the node  // further  if (curr_bound + curr_weight < final_res) {  curr_path[level] = i;  visited[i] = true;  // call TSPRec for the next level  TSPRec(adj curr_bound curr_weight  level + 1 curr_path);  }  // Else we have to prune the node by  // resetting all changes to curr_weight and  // curr_bound  curr_weight -= adj[curr_path[level - 1] i];  curr_bound = temp;  // Also reset the visited array  Array.Fill(visited false);  for (int j = 0; j <= level - 1; j++)  visited[curr_path[j]] = true;  }  }  }  // This function sets up final_path[]  static void TSP(int[ ] adj)  {  int[] curr_path = new int[N + 1];  // Calculate initial lower bound for the root node  // using the formula 1/2 * (sum of first min +  // second min) for all edges.  // Also initialize the curr_path and visited array  int curr_bound = 0;  Array.Fill(curr_path -1);  Array.Fill(visited false);  // Compute initial bound  for (int i = 0; i < N; i++)  curr_bound  += (firstMin(adj i) + secondMin(adj i));  // Rounding off the lower bound to an integer  curr_bound = (curr_bound == 1) ? curr_bound / 2 + 1  : curr_bound / 2;  // We start at vertex 1 so the first vertex  // in curr_path[] is 0  visited[0] = true;  curr_path[0] = 0;  // Call to TSPRec for curr_weight equal to  // 0 and level 1  TSPRec(adj curr_bound 0 1 curr_path);  }  // Driver code  static public void Main()  {  // Adjacency matrix for the given graph  int[ ] adj = { { 0 10 15 20 }  { 10 0 35 25 }  { 15 35 0 30 }  { 20 25 30 0 } };  TSP(adj);  Console.WriteLine('Minimum cost : ' + final_res);  Console.Write('Path Taken : ');  for (int i = 0; i <= N; i++) {  Console.Write(final_path[i] + ' ');  }  } } // This code is contributed by Rohit Pradhan 
JavaScript
const N = 4; // final_path[] stores the final solution ie the // path of the salesman.  let final_path = Array (N + 1).fill (-1);   // visited[] keeps track of the already visited nodes // in a particular path  let visited = Array (N).fill (false); // Stores the final minimum weight of shortest tour.  let final_res = Number.MAX_SAFE_INTEGER; // Function to copy temporary solution to // the final solution function copyToFinal (curr_path){  for (let i = 0; i < N; i++){  final_path[i] = curr_path[i];  }  final_path[N] = curr_path[0]; } // Function to find the minimum edge cost // having an end at the vertex i function firstMin (adj i){ let min = Number.MAX_SAFE_INTEGER;  for (let k = 0; k < N; k++){  if (adj[i][k] < min && i !== k){  min = adj[i][k];  }  }  return min; } // function to find the second minimum edge cost // having an end at the vertex i function secondMin (adj i){  let first = Number.MAX_SAFE_INTEGER;  let second = Number.MAX_SAFE_INTEGER;  for (let j = 0; j < N; j++){  if (i == j){  continue;  }  if (adj[i][j] <= first){  second = first;  first = adj[i][j];  }  else if (adj[i][j] <= second && adj[i][j] !== first){  second = adj[i][j];  }  }  return second; } // function that takes as arguments: // curr_bound -> lower bound of the root node // curr_weight-> stores the weight of the path so far // level-> current level while moving in the search // space tree // curr_path[] -> where the solution is being stored which // would later be copied to final_path[]  function TSPRec (adj curr_bound curr_weight level curr_path) {   // base case is when we have reached level N which // means we have covered all the nodes once  if (level == N)  {   // check if there is an edge from last vertex in  // path back to the first vertex  if (adj[curr_path[level - 1]][curr_path[0]] !== 0)  {    // curr_res has the total weight of the  // solution we got  let curr_res =  curr_weight + adj[curr_path[level - 1]][curr_path[0]];    // Update final result and final path if  // current result is better.  if (curr_res < final_res)  {  copyToFinal (curr_path);  final_res = curr_res;  }  }  return;   }    // for any other level iterate for all vertices to  // build the search space tree recursively  for (let i = 0; i < N; i++){    // Consider next vertex if it is not same (diagonal  // entry in adjacency matrix and not visited  // already)  if (adj[curr_path[level - 1]][i] !== 0 && !visited[i]){    let temp = curr_bound;  curr_weight += adj[curr_path[level - 1]][i];    // different computation of curr_bound for  // level 2 from the other levels  if (level == 1){  curr_bound -= (firstMin (adj curr_path[level - 1]) + firstMin (adj i)) / 2;   }  else  {  curr_bound -= (secondMin (adj curr_path[level - 1]) + firstMin (adj i)) / 2;   }    // curr_bound + curr_weight is the actual lower bound  // for the node that we have arrived on  // If current lower bound < final_res we need to explore  // the node further  if (curr_bound + curr_weight < final_res){  curr_path[level] = i;  visited[i] = true;   // call TSPRec for the next level  TSPRec (adj curr_bound curr_weight level + 1 curr_path);   }    // Else we have to prune the node by resetting  // all changes to curr_weight and curr_bound  curr_weight -= adj[curr_path[level - 1]][i];  curr_bound = temp;    // Also reset the visited array  visited.fill (false)   for (var j = 0; j <= level - 1; j++)  visited[curr_path[j]] = true;   }   } }  // This function sets up final_path[]   function TSP (adj) {   let curr_path = Array (N + 1).fill (-1);   // Calculate initial lower bound for the root node // using the formula 1/2 * (sum of first min + // second min) for all edges. // Also initialize the curr_path and visited array  let curr_bound = 0;   visited.fill (false);    // compute initial bound  for (let i = 0; i < N; i++){  curr_bound += firstMin (adj i) + secondMin (adj i);    }    // Rounding off the lower bound to an integer  curr_bound = curr_bound == 1 ? (curr_bound / 2) + 1 : (curr_bound / 2);   // We start at vertex 1 so the first vertex // in curr_path[] is 0  visited[0] = true;   curr_path[0] = 0;   // Call to TSPRec for curr_weight equal to // 0 and level 1  TSPRec (adj curr_bound 0 1 curr_path); } //Adjacency matrix for the given graph  let adj =[[0 10 15 20]   [10 0 35 25]  [15 35 0 30]  [20 25 30 0]];   TSP (adj);   console.log (`Minimum cost:${final_res}`); console.log (`Path Taken:${final_path.join (' ')}`);  // This code is contributed by anskalyan3. 

Producción :  
 

Minimum cost : 80 Path Taken : 0 1 3 2 0 

El redondeo se está haciendo en esta línea de código:

if (level==1) curr_bound -= ((firstMin(adj curr_path[level-1]) + firstMin(adj i))/2); else curr_bound -= ((secondMin(adj curr_path[level-1]) + firstMin(adj i))/2); 

En el algoritmo TSP de la rama y el límite, calculamos un límite inferior en el costo total de la solución óptima agregando los costos de borde mínimo para cada vértice y luego dividiendo por dos. Sin embargo, este límite inferior puede no ser un entero. Para obtener un límite inferior entero, podemos usar el redondeo.

En el código anterior, la variable Curr_bound contiene el límite inferior actual en el costo total de la solución óptima. Cuando visitamos un nuevo vértice en el nivel de nivel, calculamos un nuevo toque inferior New_bound tomando la suma de los costos de borde mínimo para el nuevo vértice y sus dos vecinos más cercanos. Luego actualizamos la variable Curr_bound redondeando New_Bound al entero más cercano.

Si el nivel es 1, redondeamos al entero más cercano. Esto se debe a que solo hemos visitado un vértice hasta ahora y queremos ser conservadores en nuestra estimación del costo total de la solución óptima. Si el nivel es mayor que 1, utilizamos una estrategia de redondeo más agresiva que tiene en cuenta el hecho de que ya hemos visitado algunos vértices y, por lo tanto, podemos hacer una estimación más precisa del costo total de la solución óptima.


Complejidad del tiempo: La peor complejidad de la rama y el límite sigue siendo la misma que la de la fuerza bruta claramente porque en el peor de los casos nunca tendremos la oportunidad de podar un nodo. Mientras que en la práctica funciona muy bien según la diferente instancia del TSP. La complejidad también depende de la elección de la función delimitadora, ya que son los que deciden cuántos nodos se podan podarse.
Referencias:  
http://lcm.csa.iisc.ernet.in/dsa/node187.html