logo

Encuentra la secuencia de serpiente de longitud máxima

Dada una cuadrícula de números, encuentre la secuencia de serpiente de longitud máxima y imprima. Si existe múltiples secuencias de serpiente con la longitud máxima, imprima cualquiera de ellas.

Una secuencia de serpiente está compuesta de números adyacentes en la cuadrícula de tal manera que para cada número el número a la derecha o el número a continuación es +1 o -1 su valor. Por ejemplo, si está en la ubicación (x y) en la cuadrícula, puede moverse a la derecha, es decir (x y+1) si ese número es ± 1 o se mueve hacia abajo, es decir (x+1 y) si ese número es ± 1.



For example   9   6 5 2    8 7 6 5    7 3 1   6    1 1 1   7   In above grid the longest snake sequence is: (9 8 7 6 5 6 7)

A continuación, la figura muestra todas las rutas posibles:

convertir cadena en int

senkessequence' title=

Le recomendamos encarecidamente que minimice su navegador e intente esto usted mismo primero.



La idea es usar programación dinámica. Para cada celda de la matriz mantenemos la longitud máxima de una serpiente que termina en la celda actual. La secuencia de serpiente de longitud máxima tendrá un valor máximo. La celda de valor máximo corresponderá a la cola de la serpiente. Para imprimir la serpiente, necesitamos retroceder desde la cola hasta la cabeza de Snake.

Let   T[i][i]   represent maximum length of a snake which ends at cell (i j) then for given matrix M the DP relation is defined as T[0][0] = 0  T[i][j] = max(T[i][j] T[i][j - 1] + 1) if M[i][j] = M[i][j - 1] ± 1  T[i][j] = max(T[i][j] T[i - 1][j] + 1) if M[i][j] = M[i - 1][j] ± 1

A continuación se muestra la implementación de la idea 

C++
// C++ program to find maximum length // Snake sequence and print it #include    using namespace std; #define M 4 #define N 4 struct Point {  int x y; }; // Function to find maximum length Snake sequence path // (i j) corresponds to tail of the snake list<Point> findPath(int grid[M][N] int mat[M][N]  int i int j) {  list<Point> path;  Point pt = {i j};  path.push_front(pt);  while (grid[i][j] != 0)  {  if (i > 0 &&  grid[i][j] - 1 == grid[i - 1][j])  {  pt = {i - 1 j};  path.push_front(pt);  i--;  }  else if (j > 0 &&  grid[i][j] - 1 == grid[i][j - 1])  {  pt = {i j - 1};  path.push_front(pt);  j--;  }  }  return path; } // Function to find maximum length Snake sequence void findSnakeSequence(int mat[M][N]) {  // table to store results of subproblems  int lookup[M][N];  // initialize by 0  memset(lookup 0 sizeof lookup);  // stores maximum length of Snake sequence  int max_len = 0;  // store coordinates to snake's tail  int max_row = 0;  int max_col = 0;  // fill the table in bottom-up fashion  for (int i = 0; i < M; i++)  {  for (int j = 0; j < N; j++)  {  // do except for (0 0) cell  if (i || j)  {  // look above  if (i > 0 &&  abs(mat[i - 1][j] - mat[i][j]) == 1)  {  lookup[i][j] = max(lookup[i][j]  lookup[i - 1][j] + 1);  if (max_len < lookup[i][j])  {  max_len = lookup[i][j];  max_row = i max_col = j;  }  }  // look left  if (j > 0 &&  abs(mat[i][j - 1] - mat[i][j]) == 1)  {  lookup[i][j] = max(lookup[i][j]  lookup[i][j - 1] + 1);  if (max_len < lookup[i][j])  {  max_len = lookup[i][j];  max_row = i max_col = j;  }  }  }  }  }  cout << 'Maximum length of Snake sequence is: '  << max_len << endl;  // find maximum length Snake sequence path  list<Point> path = findPath(lookup mat max_row  max_col);  cout << 'Snake sequence is:';  for (auto it = path.begin(); it != path.end(); it++)  cout << endl << mat[it->x][it->y] << ' ('  << it->x << ' ' << it->y << ')' ; } // Driver code int main() {  int mat[M][N] =  {  {9 6 5 2}  {8 7 6 5}  {7 3 1 6}  {1 1 1 7}  };  findSnakeSequence(mat);  return 0; } 
Java
// Java program to find maximum length // Snake sequence and print it import java.util.*; class GFG  { static int M = 4; static int N = 4; static class Point {  int x y;  public Point(int x int y)   {  this.x = x;  this.y = y;  } }; // Function to find maximum length Snake sequence path // (i j) corresponds to tail of the snake static List<Point> findPath(int grid[][]   int mat[][]   int i int j) {  List<Point> path = new LinkedList<>();  Point pt = new Point(i j);  path.add(0 pt);  while (grid[i][j] != 0)  {  if (i > 0 &&  grid[i][j] - 1 == grid[i - 1][j])  {  pt = new Point(i - 1 j);  path.add(0 pt);  i--;  }  else if (j > 0 && grid[i][j] - 1 ==   grid[i][j - 1])  {  pt = new Point(i j - 1);  path.add(0 pt);  j--;  }  }  return path; } // Function to find maximum length Snake sequence static void findSnakeSequence(int mat[][]) {  // table to store results of subproblems  int [][]lookup = new int[M][N];  // initialize by 0  // stores maximum length of Snake sequence  int max_len = 0;  // store coordinates to snake's tail  int max_row = 0;  int max_col = 0;  // fill the table in bottom-up fashion  for (int i = 0; i < M; i++)  {  for (int j = 0; j < N; j++)  {  // do except for (0 0) cell  if (i != 0 || j != 0)  {  // look above  if (i > 0 &&  Math.abs(mat[i - 1][j] -   mat[i][j]) == 1)  {  lookup[i][j] = Math.max(lookup[i][j]  lookup[i - 1][j] + 1);  if (max_len < lookup[i][j])  {  max_len = lookup[i][j];  max_row = i; max_col = j;  }  }  // look left  if (j > 0 &&  Math.abs(mat[i][j - 1] -   mat[i][j]) == 1)  {  lookup[i][j] = Math.max(lookup[i][j]  lookup[i][j - 1] + 1);  if (max_len < lookup[i][j])  {  max_len = lookup[i][j];  max_row = i; max_col = j;  }  }  }  }  }  System.out.print('Maximum length of Snake ' +   'sequence is: ' + max_len + 'n');  // find maximum length Snake sequence path  List<Point> path = findPath(lookup mat max_row  max_col);  System.out.print('Snake sequence is:');  for (Point it : path)  System.out.print('n' + mat[it.x][it.y] + ' (' +   it.x + ' ' + it.y + ')'); } // Driver code public static void main(String[] args) {  int mat[][] = {{9 6 5 2}  {8 7 6 5}  {7 3 1 6}  {1 1 1 7}};  findSnakeSequence(mat); } } // This code is contributed by 29AjayKumar 
C#
// C# program to find maximum length // Snake sequence and print it using System; using System.Collections.Generic; class GFG {  static int M = 4;  static int N = 4;  public class Point {  public int x y;  public Point(int x int y)  {  this.x = x;  this.y = y;  }  };  // Function to find maximum length Snake sequence path  // (i j) corresponds to tail of the snake  static List<Point> findPath(int[ ] grid int[ ] mat  int i int j)  {  List<Point> path = new List<Point>();  Point pt = new Point(i j);  path.Insert(0 pt);  while (grid[i j] != 0) {  if (i > 0 && grid[i j] - 1 == grid[i - 1 j]) {  pt = new Point(i - 1 j);  path.Insert(0 pt);  i--;  }  else if (j > 0  && grid[i j] - 1 == grid[i j - 1]) {  pt = new Point(i j - 1);  path.Insert(0 pt);  j--;  }  }  return path;  }  // Function to find maximum length Snake sequence  static void findSnakeSequence(int[ ] mat)  {  // table to store results of subproblems  int[ ] lookup = new int[M N];  // initialize by 0  // stores maximum length of Snake sequence  int max_len = 0;  // store coordinates to snake's tail  int max_row = 0;  int max_col = 0;  // fill the table in bottom-up fashion  for (int i = 0; i < M; i++) {  for (int j = 0; j < N; j++) {  // do except for (0 0) cell  if (i != 0 || j != 0) {  // look above  if (i > 0  && Math.Abs(mat[i - 1 j]  - mat[i j])  == 1) {  lookup[i j] = Math.Max(  lookup[i j]  lookup[i - 1 j] + 1);  if (max_len < lookup[i j]) {  max_len = lookup[i j];  max_row = i;  max_col = j;  }  }  // look left  if (j > 0  && Math.Abs(mat[i j - 1]  - mat[i j])  == 1) {  lookup[i j] = Math.Max(  lookup[i j]  lookup[i j - 1] + 1);  if (max_len < lookup[i j]) {  max_len = lookup[i j];  max_row = i;  max_col = j;  }  }  }  }  }  Console.Write('Maximum length of Snake '  + 'sequence is: ' + max_len + 'n');  // find maximum length Snake sequence path  List<Point> path  = findPath(lookup mat max_row max_col);  Console.Write('Snake sequence is:');  foreach(Point it in path)  Console.Write('n' + mat[it.x it.y] + ' ('  + it.x + ' ' + it.y + ')');  }  // Driver code  public static void Main(String[] args)  {  int[ ] mat = { { 9 6 5 2 }  { 8 7 6 5 }  { 7 3 1 6 }  { 1 1 1 7 } };  findSnakeSequence(mat);  } } // This code is contributed by Princi Singh 
Python3
def snakesequence(S m n): sequence = {} DP = [[1 for x in range(m+1)] for x in range(n+1)] a b maximum = 0 0 0 position = [0 0] for i in range(0 n+1): for j in range(0 m+1): a b = 0 0 p = 'initial' if(i > 0 and abs(S[i][j] - S[i-1][j]) == 1): a = DP[i-1][j] if(j > 0 and abs(S[i][j] - S[i][j-1]) == 1): b = DP[i][j-1] if a != 0 and a >= b: p = str(i-1) + ' ' + str(j) elif b != 0: p = str(i) + ' ' + str(j-1) q = str(i) + ' ' + str(j) sequence[q] = p DP[i][j] = DP[i][j] + max(a b) if DP[i][j] >= maximum: maximum = DP[i][j] position[0] = i position[1] = j snakeValues = [] snakePositions = [] snakeValues.append(S[position[0]][position[1]]) check = 'found' str_next = str(position[0]) + ' ' + str(position[1]) findingIndices = sequence[str_next].split() while(check == 'found'): if sequence[str_next] == 'initial': snakePositions.insert(0 str_next) check = 'end' continue findingIndices = sequence[str_next].split() g = int(findingIndices[0]) h = int(findingIndices[1]) snakeValues.insert(0 S[g][h]) snake_position = str(g) + ' ' + str(h) snakePositions.insert(0 str_next) str_next = sequence[str_next] return [snakeValues snakePositions] S = [[9 6 5 2] [8 7 6 5] [7 3 1 6] [1 1 10 7]] m = 3 n = 3 seq = snakesequence(S m n) for i in range(len(seq[0])): print(seq[0][i] '' seq[1][i].split()) 
JavaScript
function snakesequence(S m n) {  let sequence = {}  let DP = new Array(n + 1)  for (var i = 0; i <= n; i++)  DP[i] = new Array(m + 1).fill(1)  let a = 0 b = 0 maximum = 0  let position = [0 0]  for (var i = 0; i <= n; i++)  {  for (var j = 0; j <= m; j++)   {  a = 0  b = 0  let p = 'initial'  if(i > 0 && Math.abs(S[i][j] - S[i-1][j]) == 1)  a = DP[i-1][j]  if(j > 0 && Math.abs(S[i][j] - S[i][j-1]) == 1)  b = DP[i][j-1]  if (a != 0 && a >= b)  p = String(i-1) + ' ' + String(j)  else if (b != 0)  p = String(i) + ' ' + String(j-1)  let q = String(i) + ' ' + String(j)  sequence[q] = p  DP[i][j] = DP[i][j] + Math.max(a b)  if (DP[i][j] >= maximum)  {  maximum = DP[i][j]  position[0] = i  position[1] = j  }  }  }  let snakeValues = []  let snakePositions = []  snakeValues.push(S[position[0]][position[1]])  let check = 'found'  let String_next = String(position[0]) + ' ' + String(position[1])  let findingIndices = sequence[String_next].split(' ')  while(check == 'found')  {  if (sequence[String_next] == 'initial')  {  snakePositions.unshift(String_next)  check = 'end'  continue  }  findingIndices = sequence[String_next].split(' ')  let g = parseInt(findingIndices[0])  let h = parseInt(findingIndices[1])  snakeValues.unshift(S[g][h])  let snake_position = String(g) + ' ' + String(h)  snakePositions.unshift(String_next)  String_next = sequence[String_next]  }  return [snakeValues snakePositions] } // Driver Code  let S = [[9 6 5 2]  [8 7 6 5]  [7 3 1 6]  [1 1 10 7]] let m = 3 let n = 3 let seq = snakesequence(S m n) for (var i = 0; i < seq[0].length; i++)   console.log(seq[0][i] + '' seq[1][i].split(' ')) 

Producción
Maximum length of Snake sequence is: 6 Snake sequence is: 9 (0 0) 8 (1 0) 7 (1 1) 6 (1 2) 5 (1 3) 6 (2 3) 7 (3 3)

La complejidad del tiempo de la solución anterior es O (m*n). El espacio auxiliar utilizado por la solución anterior es o (m*n). Si no estamos obligados a imprimir, el espacio de la serpiente puede reducirse aún más a O (n), ya que solo usamos el resultado de la última fila.