La ordenación cíclica es un algoritmo de ordenación inestable local que resulta particularmente útil al ordenar matrices que contienen elementos con un rango pequeño de valores. Fue desarrollado por W. D. Jones y publicado en 1963.
La idea básica detrás de la clasificación por ciclos es dividir la matriz de entrada en ciclos donde cada ciclo consta de elementos que pertenecen a la misma posición en la matriz de salida ordenada. Luego, el algoritmo realiza una serie de intercambios para colocar cada elemento en su posición correcta dentro de su ciclo hasta que se completen todos los ciclos y se ordene la matriz.
Aquí hay una explicación paso a paso del algoritmo de clasificación cíclica:
- Comience con una matriz desordenada de n elementos.
- Inicializar un ciclo variableComience en 0.
- Para cada elemento de la matriz, compárelo con todos los demás elementos a su derecha. Si hay elementos que son más pequeños que el elemento actual, incremente el ciclo de inicio.
- Si CycleStart sigue siendo 0 después de comparar el primer elemento con todos los demás elementos, pase al siguiente elemento y repita el paso 3.
- Una vez que se encuentra un elemento más pequeño, intercambie el elemento actual con el primer elemento de su ciclo. Luego, el ciclo continúa hasta que el elemento actual regresa a su posición original.
Repita los pasos 3 a 5 hasta que se hayan completado todos los ciclos.
La matriz ahora está ordenada.
Una de las ventajas de la clasificación cíclica es que ocupa poca memoria, ya que clasifica la matriz en el lugar y no requiere memoria adicional para variables temporales o búferes. Sin embargo, puede resultar lento en determinadas situaciones, especialmente cuando la matriz de entrada tiene un amplio rango de valores. No obstante, la clasificación cíclica sigue siendo un algoritmo de clasificación útil en ciertos contextos, como cuando se clasifican matrices pequeñas con rangos de valores limitados.
La clasificación cíclica es un algoritmo de clasificación in situ algoritmo de clasificación inestable y un tipo de comparación que es teóricamente óptimo en términos del número total de escrituras en la matriz original.
hola mundo con java
- Es óptimo en términos de la cantidad de escrituras en memoria. Él Minimiza el número de escrituras en memoria. ordenar (Cada valor se escribe cero veces si ya está en su posición correcta o se escribe una vez en su posición correcta).
- Se basa en la idea de que la matriz a ordenar se puede dividir en ciclos. Los ciclos se pueden visualizar como un gráfico. Tenemos n nodos y un borde dirigido desde el nodo i al nodo j si el elemento en el índice i debe estar presente en el índice j en la matriz ordenada.
Ciclo en arr[] = {2 4 5 1 3}
Ciclo en arr[] = {2 4 5 1 3}- Ciclo en arr[] = {4 3 2 1}
Ciclo en arr[] = {4 3 2 1}
Consideramos uno por uno todos los ciclos. Primero consideramos el ciclo que incluye el primer elemento. Encontramos la posición correcta del primer elemento y lo colocamos en su posición correcta, digamos j. Consideramos el valor anterior de arr[j] y encontramos su posición correcta. Seguimos haciendo esto hasta que todos los elementos del ciclo actual se coloquen en la posición correcta, es decir, no volvemos al punto de inicio del ciclo.
mapa mecanografiado
Pseudocódigo:
Begin
for
start:= 0 to n - 2 do
key := array[start]
location := start
for i:= start + 1 to n-1 do
if array[i] < key then
location: =location +1
done
if location = start then
ignore lower part go for next iteration
while key = array[location] do
location: = location + 1
done
if location != start then
swap array[location] with key
while location != start do
location start
for i:= start + 1 to n-1 do
if array[i] < key then
location: =location +1
done
while key= array[location]
location := location +1
if key != array[location]
Swap array[location] and key
done
done
End
Explicación :
arr[] = {10 5 2 3}
index = 0 1 2 3
cycle_start = 0
item = 10 = arr[0]
Find position where we put the item
pos = cycle_start
i=pos+1
while(i
if (arr[i] < item)
pos++;
We put 10 at arr[3] and change item to
old value of arr[3].
arr[] = {10 5 2 10 }
item = 3
Again rotate rest cycle that start with index '0'
Find position where we put the item = 3
we swap item with element at arr[1] now
arr[] = {10 3 2 10 }
item = 5
Again rotate rest cycle that start with index '0' and item = 5
we swap item with element at arr[2].
arr[] = {10 3 5 10 }
item = 2
Again rotate rest cycle that start with index '0' and item = 2
arr[] = { 2 3 5 10 }
Above is one iteration for cycle_stat = 0.
Repeat above steps for cycle_start = 1 2 ..n-2
A continuación se muestra la implementación del enfoque anterior:
CPP// C++ program to implement cycle sort #include using namespace std; // Function sort the array using Cycle sort void cycleSort(int arr[] int n) { // count number of memory writes int writes = 0; // traverse array elements and put it to on // the right place for (int cycle_start = 0; cycle_start <= n - 2; cycle_start++) { // initialize item as starting point int item = arr[cycle_start]; // Find position where we put the item. We basically // count all smaller elements on right side of item. int pos = cycle_start; for (int i = cycle_start + 1; i < n; i++) if (arr[i] < item) pos++; // If item is already in correct position if (pos == cycle_start) continue; // ignore all duplicate elements while (item == arr[pos]) pos += 1; // put the item to it's right position if (pos != cycle_start) { swap(item arr[pos]); writes++; } // Rotate rest of the cycle while (pos != cycle_start) { pos = cycle_start; // Find position where we put the element for (int i = cycle_start + 1; i < n; i++) if (arr[i] < item) pos += 1; // ignore all duplicate elements while (item == arr[pos]) pos += 1; // put the item to it's right position if (item != arr[pos]) { swap(item arr[pos]); writes++; } } } // Number of memory writes or swaps // cout << writes << endl ; } // Driver program to test above function int main() { int arr[] = { 1 8 3 9 10 10 2 4 }; int n = sizeof(arr) / sizeof(arr[0]); cycleSort(arr n); cout << 'After sort : ' << endl; for (int i = 0; i < n; i++) cout << arr[i] << ' '; return 0; }
Java // Java program to implement cycle sort import java.util.*; import java.lang.*; class GFG { // Function sort the array using Cycle sort public static void cycleSort(int arr[] int n) { // count number of memory writes int writes = 0; // traverse array elements and put it to on // the right place for (int cycle_start = 0; cycle_start <= n - 2; cycle_start++) { // initialize item as starting point int item = arr[cycle_start]; // Find position where we put the item. We basically // count all smaller elements on right side of item. int pos = cycle_start; for (int i = cycle_start + 1; i < n; i++) if (arr[i] < item) pos++; // If item is already in correct position if (pos == cycle_start) continue; // ignore all duplicate elements while (item == arr[pos]) pos += 1; // put the item to it's right position if (pos != cycle_start) { int temp = item; item = arr[pos]; arr[pos] = temp; writes++; } // Rotate rest of the cycle while (pos != cycle_start) { pos = cycle_start; // Find position where we put the element for (int i = cycle_start + 1; i < n; i++) if (arr[i] < item) pos += 1; // ignore all duplicate elements while (item == arr[pos]) pos += 1; // put the item to it's right position if (item != arr[pos]) { int temp = item; item = arr[pos]; arr[pos] = temp; writes++; } } } } // Driver program to test above function public static void main(String[] args) { int arr[] = { 1 8 3 9 10 10 2 4 }; int n = arr.length; cycleSort(arr n); System.out.println('After sort : '); for (int i = 0; i < n; i++) System.out.print(arr[i] + ' '); } } // Code Contributed by Mohit Gupta_OMG <(0_o)>
Python3 # Python program to implement cycle sort def cycleSort(array): writes = 0 # Loop through the array to find cycles to rotate. for cycleStart in range(0 len(array) - 1): item = array[cycleStart] # Find where to put the item. pos = cycleStart for i in range(cycleStart + 1 len(array)): if array[i] < item: pos += 1 # If the item is already there this is not a cycle. if pos == cycleStart: continue # Otherwise put the item there or right after any duplicates. while item == array[pos]: pos += 1 array[pos] item = item array[pos] writes += 1 # Rotate the rest of the cycle. while pos != cycleStart: # Find where to put the item. pos = cycleStart for i in range(cycleStart + 1 len(array)): if array[i] < item: pos += 1 # Put the item there or right after any duplicates. while item == array[pos]: pos += 1 array[pos] item = item array[pos] writes += 1 return writes # driver code arr = [1 8 3 9 10 10 2 4 ] n = len(arr) cycleSort(arr) print('After sort : ') for i in range(0 n) : print(arr[i] end = ' ') # Code Contributed by Mohit Gupta_OMG <(0_o)>
C# // C# program to implement cycle sort using System; class GFG { // Function sort the array using Cycle sort public static void cycleSort(int[] arr int n) { // count number of memory writes int writes = 0; // traverse array elements and // put it to on the right place for (int cycle_start = 0; cycle_start <= n - 2; cycle_start++) { // initialize item as starting point int item = arr[cycle_start]; // Find position where we put the item. // We basically count all smaller elements // on right side of item. int pos = cycle_start; for (int i = cycle_start + 1; i < n; i++) if (arr[i] < item) pos++; // If item is already in correct position if (pos == cycle_start) continue; // ignore all duplicate elements while (item == arr[pos]) pos += 1; // put the item to it's right position if (pos != cycle_start) { int temp = item; item = arr[pos]; arr[pos] = temp; writes++; } // Rotate rest of the cycle while (pos != cycle_start) { pos = cycle_start; // Find position where we put the element for (int i = cycle_start + 1; i < n; i++) if (arr[i] < item) pos += 1; // ignore all duplicate elements while (item == arr[pos]) pos += 1; // put the item to it's right position if (item != arr[pos]) { int temp = item; item = arr[pos]; arr[pos] = temp; writes++; } } } } // Driver program to test above function public static void Main() { int[] arr = { 1 8 3 9 10 10 2 4 }; int n = arr.Length; // Function calling cycleSort(arr n); Console.WriteLine('After sort : '); for (int i = 0; i < n; i++) Console.Write(arr[i] + ' '); } } // This code is contributed by Nitin Mittal
JavaScript <script> // Javascript program to implement cycle sort // Function sort the array using Cycle sort function cycleSort(arr n) { // count number of memory writes let writes = 0; // traverse array elements and put it to on // the right place for (let cycle_start = 0; cycle_start <= n - 2; cycle_start++) { // initialize item as starting point let item = arr[cycle_start]; // Find position where we put the item. We basically // count all smaller elements on right side of item. let pos = cycle_start; for (let i = cycle_start + 1; i < n; i++) if (arr[i] < item) pos++; // If item is already in correct position if (pos == cycle_start) continue; // ignore all duplicate elements while (item == arr[pos]) pos += 1; // put the item to it's right position if (pos != cycle_start) { let temp = item; item = arr[pos]; arr[pos] = temp; writes++; } // Rotate rest of the cycle while (pos != cycle_start) { pos = cycle_start; // Find position where we put the element for (let i = cycle_start + 1; i < n; i++) if (arr[i] < item) pos += 1; // ignore all duplicate elements while (item == arr[pos]) pos += 1; // put the item to it's right position if (item != arr[pos]) { let temp = item; item = arr[pos]; arr[pos] = temp; writes++; } } } } // Driver code let arr = [ 1 8 3 9 10 10 2 4 ]; let n = arr.length; cycleSort(arr n); document.write('After sort : ' + '
'); for (let i = 0; i < n; i++) document.write(arr[i] + ' '); // This code is contributed by susmitakundugoaldanga. </script>
Producción
After sort : 1 2 3 4 8 9 10 10
Análisis de complejidad temporal :
- Peor caso: En2)
- Caso promedio: En2)
- Mejor caso: En2)
Espacio Auxiliar: O(1)
- La complejidad del espacio es constante porque este algoritmo está implementado, por lo que no utiliza memoria adicional para ordenar.
Método 2: Este método solo es aplicable cuando los valores o elementos de una matriz determinados están en el rango de 1 a N o de 0 a N. En este método no necesitamos rotar una matriz.
Acercarse : Todos los valores de la matriz dados deben estar en el rango de 1 a N o de 0 a N. Si el rango es de 1 a N, entonces la posición correcta de cada elemento de la matriz será el índice == valor-1, es decir, significa que en el valor del índice 0 será 1 de manera similar, en la posición del índice 1 el valor será 2 y así sucesivamente hasta el valor n.
de manera similar, para valores de 0 a N, la posición de índice correcta de cada elemento o valor de la matriz será la misma que su valor, es decir, en el índice 0, 0 estará allí, la primera posición 1 estará allí.
Explicación :
arr[] = {5 3 1 4 2}
index = 0 1 2 3 4
i = 0;
while( i < arr.length)
correctposition = arr[i]-1;
find ith item correct position
for the first time i = 0 arr[0] = 5 correct index of 5 is 4 so arr[i] - 1 = 5-1 = 4
if( arr[i] <= arr.length && arr[i] != arr[correctposition])
arr[i] = 5 and arr[correctposition] = 4
so 5 <= 5 && 5 != 4 if condition true
now swap the 5 with 4
int temp = arr[i];
arr[i] = arr[correctposition];
arr[correctposition] = temp;
now resultant arr at this after 1st swap
arr[] = {2 3 1 4 5} now 5 is shifted at its correct position
now loop will run again check for i = 0 now arr[i] is = 2
after swapping 2 at its correct position
arr[] = {3 2 1 4 5}
now loop will run again check for i = 0 now arr[i] is = 3
after swapping 3 at its correct position
arr[] = {1 2 3 4 5}
now loop will run again check for i = 0 now arr[i] is = 1
this time 1 is at its correct position so else block will execute and i will increment i = 1;
once i exceeds the size of array will get array sorted.
arr[] = {1 2 3 4 5}
else
i++;
loop end;
once while loop end we get sorted array just print it
for( index = 0 ; index < arr.length; index++)
print(arr[index] + ' ')
sorted arr[] = {1 2 3 4 5}
A continuación se muestra la implementación del enfoque anterior:
df.locC++
#include using namespace std; void cyclicSort(int arr[] int n){ int i = 0; while(i < n) { // as array is of 1 based indexing so the // correct position or index number of each // element is element-1 i.e. 1 will be at 0th // index similarly 2 correct index will 1 so // on... int correct = arr[i] - 1 ; if(arr[i] != arr[correct]){ // if array element should be lesser than // size and array element should not be at // its correct position then only swap with // its correct position or index value swap(arr[i] arr[correct]) ; }else{ // if element is at its correct position // just increment i and check for remaining // array elements i++ ; } } } void printArray(int arr[] int size) { int i; for (i = 0; i < size; i++) cout << arr[i] << ' '; cout << endl; } int main() { int arr[] = { 3 2 4 5 1}; int n = sizeof(arr) / sizeof(arr[0]); cout << 'Before sorting array: n'; printArray(arr n); cyclicSort(arr n); cout << 'Sorted array: n'; printArray(arr n); return 0; }
Java // java program to check implement cycle sort import java.util.*; public class MissingNumber { public static void main(String[] args) { int[] arr = { 3 2 4 5 1 }; int n = arr.length; System.out.println('Before sort :'); System.out.println(Arrays.toString(arr)); CycleSort(arr n); } static void CycleSort(int[] arr int n) { int i = 0; while (i < n) { // as array is of 1 based indexing so the // correct position or index number of each // element is element-1 i.e. 1 will be at 0th // index similarly 2 correct index will 1 so // on... int correctpos = arr[i] - 1; if (arr[i] < n && arr[i] != arr[correctpos]) { // if array element should be lesser than // size and array element should not be at // its correct position then only swap with // its correct position or index value swap(arr i correctpos); } else { // if element is at its correct position // just increment i and check for remaining // array elements i++; } } System.out.println('After sort : '); System.out.print(Arrays.toString(arr)); } static void swap(int[] arr int i int correctpos) { // swap elements with their correct indexes int temp = arr[i]; arr[i] = arr[correctpos]; arr[correctpos] = temp; } } // this code is contributed by devendra solunke
Python # Python program to check implement cycle sort def cyclicSort(arr n): i = 0 while i < n: # as array is of 1 based indexing so the # correct position or index number of each # element is element-1 i.e. 1 will be at 0th # index similarly 2 correct index will 1 so # on... correct = arr[i] - 1 if arr[i] != arr[correct]: # if array element should be lesser than # size and array element should not be at # its correct position then only swap with # its correct position or index value arr[i] arr[correct] = arr[correct] arr[i] else: # if element is at its correct position # just increment i and check for remaining # array elements i += 1 def printArray(arr): print(*arr) arr = [3 2 4 5 1] n = len(arr) print('Before sorting array:') printArray(arr) # Function Call cyclicSort(arr n) print('Sorted array:') printArray(arr) # This Code is Contributed by Prasad Kandekar(prasad264)
C# using System; public class GFG { static void CycleSort(int[] arr int n) { int i = 0; while (i < n) { // as array is of 1 based indexing so the // correct position or index number of each // element is element-1 i.e. 1 will be at 0th // index similarly 2 correct index will 1 so // on... int correctpos = arr[i] - 1; if (arr[i] < n && arr[i] != arr[correctpos]) { // if array element should be lesser than // size and array element should not be at // its correct position then only swap with // its correct position or index value swap(arr i correctpos); } else { // if element is at its correct position // just increment i and check for remaining // array elements i++; } } Console.Write('nAfter sort : '); for (int index = 0; index < n; index++) Console.Write(arr[index] + ' '); } static void swap(int[] arr int i int correctpos) { // swap elements with their correct indexes int temp = arr[i]; arr[i] = arr[correctpos]; arr[correctpos] = temp; } static public void Main() { // Code int[] arr = { 3 2 4 5 1 }; int n = arr.Length; Console.Write('Before sort : '); for (int i = 0; i < n; i++) Console.Write(arr[i] + ' '); CycleSort(arr n); } } // This code is contributed by devendra solunke
JavaScript // JavaScript code for the above code function cyclicSort(arr n) { var i = 0; while (i < n) { // as array is of 1 based indexing so the // correct position or index number of each // element is element-1 i.e. 1 will be at 0th // index similarly 2 correct index will 1 so // on... let correct = arr[i] - 1; if (arr[i] !== arr[correct]) { // if array element should be lesser than // size and array element should not be at // its correct position then only swap with // its correct position or index value [arr[i] arr[correct]] = [arr[correct] arr[i]]; } else { // if element is at its correct position // just increment i and check for remaining // array elements i++; } } } function printArray(arr size) { for (var i = 0; i < size; i++) { console.log(arr[i] + ' '); } console.log('n'); } var arr = [3 2 4 5 1]; var n = arr.length; console.log('Before sorting array: n'); printArray(arr n); cyclicSort(arr n); console.log('Sorted array: n'); printArray(arr n); // This Code is Contributed by Prasad Kandekar(prasad264)
Producción
Before sorting array: 3 2 4 5 1 Sorted array: 1 2 3 4 5
Análisis de complejidad temporal:
- Peor caso: En)
- Caso promedio: En)
- Mejor caso: En)
Espacio Auxiliar: O(1)
Ventaja de la clasificación cíclica:
- No se requiere almacenamiento adicional.
- Algoritmo de clasificación in situ.
- Un número mínimo de escrituras en la memoria.
- La clasificación cíclica es útil cuando la matriz está almacenada en EEPROM o FLASH.
Desventaja del tipo de ciclo:
- No se utiliza mayoritariamente.
- Tiene más complejidad temporal o(n^2)
- Algoritmo de clasificación inestable.
Aplicación del tipo Ciclo:
- Este algoritmo de clasificación es más adecuado para situaciones en las que las operaciones de escritura o intercambio de memoria son costosas.
- Útil para problemas complejos.