logo

Recuento de subarreglos cuyo elemento máximo es mayor que k

Dada una serie de norte elementos y un numero entero k . La tarea es encontrar el recuento del subarreglo que tiene un elemento máximo mayor que K.

Ejemplos:  

Input : arr[] = {1 2 3} and k = 2.  
Output : 3
All the possible subarrays of arr[] are
{ 1 } { 2 } { 3 } { 1 2 } { 2 3 }
{ 1 2 3 }.
Their maximum elements are 1 2 3 2 3 3.
There are only 3 maximum elements > 2.
Recommended Practice Recuento de subarreglos ¡Pruébalo!

Método 1: contar submatrices que tienen un elemento máximo<= K and then subtracting from total subarrays.

La idea es abordar el problema contando subarreglos cuyo elemento máximo sea menor o igual a k, ya que contar dichos subarreglos es más fácil. Para encontrar el número de subarreglo cuyo elemento máximo es menor o igual a k, elimine todos los elementos que sean mayores que K y encuentre el número de subarreglo con los elementos de la izquierda. 



Una vez que encontremos el recuento anterior, podemos restarlo de n*(n+1)/2 para obtener el resultado requerido. Observe que puede haber n*(n+1)/2 número posible de subarreglos de cualquier arreglo de tamaño n. Entonces, encontrar el número de subarreglo cuyo elemento máximo es menor o igual a K y restarlo de n*(n+1)/2 nos da la respuesta.

A continuación se muestra la implementación de este enfoque:

C++
// C++ program to count number of subarrays // whose maximum element is greater than K. #include    using namespace std; // Return number of subarrays whose maximum // element is less than or equal to K. int countSubarray(int arr[] int n int k) {  // To store count of subarrays with all  // elements less than or equal to k.  int s = 0;  // Traversing the array.  int i = 0;  while (i < n) {  // If element is greater than k ignore.  if (arr[i] > k) {  i++;  continue;  }  // Counting the subarray length whose  // each element is less than equal to k.  int count = 0;  while (i < n && arr[i] <= k) {  i++;  count++;  }  // Summing number of subarray whose  // maximum element is less than equal to k.  s += ((count * (count + 1)) / 2);  }  return (n * (n + 1) / 2 - s); } // Driven Program int main() {  int arr[] = { 1 2 3 };  int k = 2;  int n = sizeof(arr) / sizeof(arr[0]);  cout << countSubarray(arr n k);  return 0; } 
Java
// Java program to count number of subarrays // whose maximum element is greater than K. import java.util.*; class GFG {  // Return number of subarrays whose maximum  // element is less than or equal to K.  static int countSubarray(int arr[] int n int k)  {  // To store count of subarrays with all  // elements less than or equal to k.  int s = 0;  // Traversing the array.  int i = 0;  while (i < n) {  // If element is greater than k ignore.  if (arr[i] > k) {  i++;  continue;  }  // Counting the subarray length whose  // each element is less than equal to k.  int count = 0;  while (i < n && arr[i] <= k) {  i++;  count++;  }  // Summing number of subarray whose  // maximum element is less than equal to k.  s += ((count * (count + 1)) / 2);  }  return (n * (n + 1) / 2 - s);  }  // Driver code  public static void main(String[] args)  {  int arr[] = { 1 2 3 };  int k = 2;  int n = arr.length;  System.out.print(countSubarray(arr n k));  } } // This code is contributed by Anant Agarwal. 
Python3
# Python program to count # number of subarrays # whose maximum element # is greater than K. # Return number of # subarrays whose maximum # element is less than or equal to K. def countSubarray(arr n k): # To store count of # subarrays with all # elements less than # or equal to k. s = 0 # Traversing the array. i = 0 while (i < n): # If element is greater # than k ignore. if (arr[i] > k): i = i + 1 continue # Counting the subarray # length whose # each element is less # than equal to k. count = 0 while (i < n and arr[i] <= k): i = i + 1 count = count + 1 # Summing number of subarray whose # maximum element is less # than equal to k. s = s + ((count*(count + 1))//2) return (n*(n + 1)//2 - s) # Driver code arr = [1 2 3] k = 2 n = len(arr) print(countSubarray(arr n k)) # This code is contributed # by Anant Agarwal. 
C#
// C# program to count number of subarrays // whose maximum element is greater than K. using System; class GFG {  // Return number of subarrays whose maximum  // element is less than or equal to K.  static int countSubarray(int[] arr int n int k)  {  // To store count of subarrays with all  // elements less than or equal to k.  int s = 0;  // Traversing the array.  int i = 0;  while (i < n) {  // If element is greater than k ignore.  if (arr[i] > k) {  i++;  continue;  }  // Counting the subarray length whose  // each element is less than equal to k.  int count = 0;  while (i < n && arr[i] <= k) {  i++;  count++;  }  // Summing number of subarray whose  // maximum element is less than equal to k.  s += ((count * (count + 1)) / 2);  }  return (n * (n + 1) / 2 - s);  }  // Driver code  public static void Main()  {  int[] arr = {1 2 3};  int k = 2;  int n = arr.Length;  Console.WriteLine(countSubarray(arr n k));  } } // This code is contributed by vt_m. 
JavaScript
<script>  // Javascript program to count number of subarrays  // whose maximum element is greater than K.    // Return number of subarrays whose maximum  // element is less than or equal to K.  function countSubarray(arr n k)  {  // To store count of subarrays with all  // elements less than or equal to k.  let s = 0;    // Traversing the array.  let i = 0;  while (i < n) {    // If element is greater than k ignore.  if (arr[i] > k) {  i++;  continue;  }    // Counting the subarray length whose  // each element is less than equal to k.  let count = 0;  while (i < n && arr[i] <= k) {  i++;  count++;  }    // Summing number of subarray whose  // maximum element is less than equal to k.  s += parseInt((count * (count + 1)) / 2 10);  }    return (n * parseInt((n + 1) / 2 10) - s);  }    let arr = [1 2 3];  let k = 2;  let n = arr.length;  document.write(countSubarray(arr n k));   </script> 
PHP
 // PHP program to count number of subarrays // whose maximum element is greater than K. // Return number of subarrays whose maximum // element is less than or equal to K. function countSubarray( $arr $n $k) { // To store count of subarrays with all // elements less than or equal to k. $s = 0; // Traversing the array. $i = 0; while ($i < $n) { // If element is greater than k // ignore. if ($arr[$i] > $k) { $i++; continue; } // Counting the subarray length  // whose each element is less // than equal to k. $count = 0; while ($i < $n and $arr[$i] <= $k) { $i++; $count++; } // Summing number of subarray whose // maximum element is less than // equal to k. $s += (($count * ($count + 1)) / 2); } return ($n * ($n + 1) / 2 - $s); } // Driven Program $arr = array( 1 2 3 ); $k = 2; $n = count($arr); echo countSubarray($arr $n $k); // This code is contributed by anuj_67. ?> 

Producción
3 

Complejidad temporal: O(n).
Espacio auxiliar: O(1)

Método 2: contar subarreglos que tienen un elemento máximo> K

En este enfoque simplemente encontramos el recuento de subarreglos que se pueden formar al incluir un elemento en el índice i que es mayor que K. Por lo tanto, si supongamos dirección [ i ] > K entonces todos los subarreglos en los que está presente este elemento tendrán un valor mayor que k, por lo que simplemente calculamos todos estos subarreglos para cada elemento que es mayor que K y los sumamos como respuesta. Primero inicializamos dos variables. años = 0 esto contiene respuesta y anterior = -1 esto realiza un seguimiento del índice del elemento anterior que era mayor que K.

Para hacer esto solo necesitamos tres valores para cada arr [ i ] > K .

  1. Número de subarreglos a partir del índice i . esto sera ( norte - yo ) . NOTA: En esto hemos incluido el subarreglo que contiene un solo elemento que es este elemento en sí. {arr [yo]}
  2. Número de subarreglos que terminan en este índice i pero el índice inicial de estos subarreglos está después del índice anterior del elemento anterior que era mayor que K ¿por qué hacemos esto? Porque para esos elementos ya debemos haber calculado nuestra respuesta, por lo que no queremos contar los mismos subarreglos más de una vez. Entonces este valor llegará a ser ( yo - anterior - 1 ) . NOTA: En esto restamos 1 porque ya hemos contado un subarreglo {arr [i]} que tiene a sí mismo como elemento único. Véase la nota del punto anterior. 
  3. Número de subarreglos que tienen un índice inicial menor que i pero mayor que anterior e índice final mayor que i . Por lo tanto, todos los subarreglos en los que arr[i] están en el medio. Esto lo podemos calcular multiplicando los dos valores anteriores. Digámoslas como l = ( norte - yo - 1 ) y R = (yo - anterior -1). Ahora simplemente multiplicamos estos L y R porque por cada índice en el lado izquierdo de i hay un índice R que puede hacer diferentes subarreglos matemáticos básicos. Entonces esto se convierte L*R. Observe que aquí en val de L en realidad hemos restado 1. Si no hacemos esto, incluimos el índice i en nuestro L*R, lo que significará que hemos incluido subarreglos de tipo número 1 nuevamente. Ver punto 1.    

A continuación se muestra la implementación de este enfoque:

C++
// C++ program to count number of subarrays // whose maximum element is greater than K. #include    using namespace std; long long countSubarray(int arr[] int n int k) {  long long ans = 0 ;  int prev = - 1; //prev for keeping track of index of previous element > k;  for(int i = 0 ; i < n ; i++ ) {  if ( arr [ i ] > k ) {  ans += n - i ; //subarrays starting at index i.  ans += i - prev - 1 ; //subarrays ending at index i but starting after prev.  ans += ( n - i - 1 ) * 1LL * ( i - prev - 1 ) ; //subarrays having index i element in between.  prev = i; // updating prev  }  }  return ans; } // Driven Program int main() {  int arr[] = { 4 5 1 2 3 };  int k = 2;  int n = sizeof(arr) / sizeof(arr[0]);  cout << countSubarray(arr n k);  return 0; } // This Code is contributed by Manjeet Singh. 
Java
// Java program to count number of subarrays // whose maximum element is greater than K. import java.util.*; public class GFG {  static long countSubarray(int arr[] int n int k)  {  long ans = 0 ;  int prev = - 1; //prev for keeping track of index of previous element > k;  for(int i = 0 ; i < n ; i++ ) {  if ( arr [ i ] > k ) {  ans += n - i ; //subarrays starting at index i.  ans += i - prev - 1 ; //subarrays ending at index i but starting after prev.  ans += ( n - i - 1 ) * 1L * ( i - prev - 1 ) ; //subarrays having index i element in between.  prev = i; // updating prev  }  }  return ans;  }  // Driver code  public static void main(String[] args)  {  int arr[] = { 4 5 1 2 3 };  int k = 2;  int n = arr.length;  System.out.print(countSubarray(arr n k));  } } //This Code is contributed by Manjeet Singh 
Python3
# Python program to count number of subarrays # whose maximum element is greater than K. def countSubarray( arr n k): ans = 0 ; prev = - 1; #prev for keeping track of index of previous element > k; for i in range(0n): if ( arr [ i ] > k ) : ans += n - i ; #subarrays starting at index i. ans += i - prev - 1 ; #subarrays ending at index i but starting after prev. ans += ( n - i - 1 ) * ( i - prev - 1 ) ; #subarrays having index i element in between. prev = i; # updating prev return ans; # Driven Program arr = [ 4 5 1 2 3 ]; k = 2; n = len(arr); print(countSubarray(arr n k)); # this code is contributed by poojaagarwal2. 
C#
// C# program to count number of subarrays // whose maximum element is greater than K. using System; public class GFG {  static long countSubarray(int[] arr int n int k)  {  long ans = 0;  int prev = -1; // prev for keeping track of index of  // previous element > k;  for (int i = 0; i < n; i++) {  if (arr[i] > k) {  ans += n - i; // subarrays starting at index  // i.  ans += i - prev  - 1; // subarrays ending at index i  // but starting after prev.  ans += (n - i - 1) * (long)1  * (i - prev  - 1); // subarrays having index i  // element in between.  prev = i; // updating prev  }  }  return ans;  }  // Driver code  public static void Main(string[] args)  {  int[] arr = { 4 5 1 2 3 };  int k = 2;  int n = arr.Length;  Console.Write(countSubarray(arr n k));  } } // This Code is contributed by Karandeep1234 
JavaScript
// Javascript program to count number of subarrays // whose maximum element is greater than K. function countSubarray(arr n k) {  let ans = 0 ;  //prev for keeping track of index of previous element > k;  let prev = - 1;   for(let i = 0 ; i < n ; i++ ) {  if ( arr [ i ] > k ) {  //subarrays starting at index i.  ans += n - i ;   //subarrays ending at index i but starting after prev.  ans += i - prev - 1 ;  //subarrays having index i element in between.  ans += ( n - i - 1 ) * 1 * ( i - prev - 1 ) ;   // updating prev  prev = i;   }  }  return ans; } // Driven Program  let arr = [ 4 5 1 2 3 ];  let k = 2;  let n = arr.length;  document.write(countSubarray(arr n k));   

Producción
12 

Complejidad temporal: O(n).

Enfoque 3: Técnica de ventana corredera.

Algoritmo:

1. Inicializar una variable años = 0 una variable elementomax = 0 y una variable contar = 0 .

2. Itere a través de la matriz haciendo lo siguiente para cada elemento:

  a. Si el elemento actual, es decir llegar[ yo ] es mayor que el máximo actual actualice el máximo, es decir La radio = arr] y restablecer la cuenta a 0.

  b. Si el elemento actual es menor o igual al máximo actual, incremente el recuento.

  do. Si elementomax es mayor que k entonces agregar recuento de subarreglos para la respuesta final y actualizar el elementomax al elemento actual.

3. Volver Respuesta final.

Aquí está la implementación de la técnica de ventana deslizante.

C++
#include    using namespace std; int countSubarray(int arr[] int n int k) {  int maxElement = 0 count = 0 ans = 0;  for(int i=0; i<n; i++) {  if(arr[i] > maxElement) {  maxElement = arr[i];  count = 0;  }  else {  count++;  }  if(maxElement > k) {  ans += (i - count + 1);  maxElement = arr[i];  count = 0;  }  }  return ans; } int main() {  int arr[] = {1 2 3 4};  int k = 1;  int n = sizeof(arr) / sizeof(arr[0]);  cout << countSubarray(arr n k);  return 0; } // This code is contributed by Vaibhav Saroj 
C
#include  int countSubarray(int arr[] int n int k) {  int maxElement = 0 count = 0 ans = 0;  for(int i=0; i<n; i++) {  if(arr[i] > maxElement) {  maxElement = arr[i];  count = 0;  }  else {  count++;  }  if(maxElement > k) {  ans += (i - count + 1);  maxElement = arr[i];  count = 0;  }  }  ans += (count * (count + 1)) / 2;  return ans; } int main() {  int arr[] = {1 2 3 4};  int k = 1;  int n = sizeof(arr) / sizeof(arr[0]);  printf('%dn' countSubarray(arr n k));  return 0; } // This code is contributed by Vaibhav Saroj 
Java
import java.util.*; public class GFG {  // Function to count the number of subarrays with the maximum element greater than k  public static int countSubarray(int[] arr int n int k) {  int maxElement = 0; // Variable to store the maximum element encountered so far  int count = 0; // Variable to count the length of the subarray with elements <= k  int ans = 0; // Variable to store the final result  for (int i = 0; i < n; i++) {  if (arr[i] > maxElement) {  // If the current element is greater than the maximum element  // update the maximum element and reset the count to zero.  maxElement = arr[i];  count = 0;  } else {  // increment the count  count++;  }  if (maxElement > k) {  // If the maximum element in the current subarray is greater than k  // add the count of subarrays ending at the current index (i - count + 1) to the result.  ans += (i - count + 1);  // Reset the maximum element and count to zero.  maxElement = arr[i];  count = 0;  }  }  // Return the final result  return ans;  }  public static void main(String[] args) {  int[] arr = {1 2 3 4};  int k = 1;  int n = arr.length;  // Call the countSubarray function to count the number of subarrays with maximum element greater than k  int result = countSubarray(arr n k);  System.out.println(result);  } } // THIS CODE IS CONTRIBUTED BY KIRTI AGARWAL 
Python3
def countSubarray(arr n k): maxElement count ans = 0 0 0 for i in range(n): if arr[i] > maxElement: maxElement = arr[i] count = 0 else: count += 1 if maxElement > k: ans += (i - count + 1) maxElement = arr[i] count = 0 ans += (count * (count + 1)) // 2 return ans arr = [1 2 3 4] k = 1 n = len(arr) print(countSubarray(arr n k)) # This code is contributed by Vaibhav Saroj 
C#
using System; public class Program {  public static int CountSubarray(int[] arr int n int k) {  int maxElement = 0 count = 0 ans = 0;  for(int i=0; i<n; i++) {  if(arr[i] > maxElement) {  maxElement = arr[i];  count = 0;  }  else {  count++;  }  if(maxElement > k) {  ans += (i - count + 1);  maxElement = arr[i];  count = 0;  }  }  ans += (count * (count + 1)) / 2;  return ans;  }  public static void Main() {  int[] arr = {1 2 3 4};  int k = 1;  int n = arr.Length;  Console.WriteLine(CountSubarray(arr n k));  } } // This code is contributed by Vaibhav Saroj 
JavaScript
function countSubarray(arr n k) {  let maxElement = 0 count = 0 ans = 0;  for(let i=0; i<n; i++) {  if(arr[i] > maxElement) {  maxElement = arr[i];  count = 0;  }  else {  count++;  }  if(maxElement > k) {  ans += (i - count + 1);  maxElement = arr[i];  count = 0;  }  }  ans += (count * (count + 1)) / 2;  return ans; } let arr = [1 2 3 4]; let k = 1; let n = arr.length; console.log(countSubarray(arr n k)); // This code is contributed by Vaibhav Saroj 

Producción
9 

La Técnica de la Ventana Corredera es aportada por Vaibhav Saroj .

Complejidad temporal: O (n).
Complejidad espacial: O( 1 ).

Practica aquí Recuento de subarreglos .

Crear cuestionario