Dadas N ecuaciones modulares: A ? incógnita1modo(m1) . . A ? incógnitanortemodo(mnorte) Encuentra x en la ecuación A ? xmod(m)1*metro2*metro3..*metronorte) donde mies primo o una potencia de un primo y toma valores de 1 a n. La entrada se proporciona como dos matrices, la primera es una matriz que contiene valores de cada xiy la segunda matriz que contiene el conjunto de valores de cada primo. metroiGenere un número entero para el valor de x en la ecuación final.
Ejemplos:
Consider the two equations A ? 2mod(3) A ? 3mod(5) Input : 2 3 3 5 Output : 8 Consider the four equations A ? 3mod(4) A ? 4mod(7) A ? 1mod(9) (32) A ? 0mod(11) Input : 3 4 1 0 4 7 9 11 Output : 1243
Explicación : Nuestro objetivo es resolver estas ecuaciones de dos en dos. Tomamos las dos primeras ecuaciones, las combinamos y usamos ese resultado para combinarlas con la tercera ecuación y así sucesivamente. El proceso de combinar dos ecuaciones se explica a continuación tomando el ejemplo 2 como referencia:
- A ? 3mod(4) y A ? 4mod(7) son las dos ecuaciones que se nos proporcionan al principio. Sea la ecuación resultante algo A? incógnitamodo(m1*m2).
- Aestá dado por m1'*m1*x+m'*m*x1donde m1' = inverso modular de m1módulo my m' = inverso modular de mmódulo m1
- Podemos calcular la inversa modular utilizando el algoritmo euclidiano extendido.
- encontramos xser unmodo (m1*m2)
- Obtenemos que nuestra nueva ecuación sea A ? 11mod(28) donde A es 95
- Ahora intentamos combinar esto con la ecuación 3 y mediante un método similar obtenemos A ? 235mod(252) donde A = 2503
- Y finalmente al combinar esto con la ecuación 4 obtenemos A ? 1243mod(2772) donde A = 59455 yx = 1243
Observamos que 2772 es justamente igual a 4 * 7 * 9 * 11. Así hemos encontrado el valor de x para la ecuación final. Puedes referirte a Algoritmo euclidiano extendido y Inverso multiplicativo modular para obtener información adicional sobre estos temas.
C++// C++ program to combine modular equations // using Chinese Remainder Theorem #include using namespace std; // function that implements Extended euclidean // algorithm vector<int> extended_euclidean(int aint b){ if(a == 0){ vector<int> temp; temp.push_back(b); temp.push_back(0); temp.push_back(1); return temp; } else{ vector<int> temp(3); temp= extended_euclidean(b % a a); int g = temp[0]; int y = temp[1]; int x = temp[2]; temp[0] = g; temp[1] = x - ((b/a) * y); temp[2] = y; return temp; } vector<int> temp; return temp; } // modular inverse driver function int modinv(int aint m){ vector<int> temp(3); temp = extended_euclidean(a m); int g = temp[0]; int x = temp[1]; int y = temp[2]; // Since we are taking the modulo of // negative numbers so to have positive // output of the modulo we use this formula. int ans = x - (floor(x/(float)m) * m); return ans; } // function implementing Chinese remainder theorem // list m contains all the modulii // list x contains the remainders of the equations int crt(vector<int> &mvector<int> & x) { // We run this loop while the list of // remainders has length greater than 1 while(1) { // temp1 will contain the new value // of A. which is calculated according // to the equation m1' * m1 * x0 + m0' // * m0 * x1 int var1 = (modinv(m[1]m[0])); int var2 = (modinv(m[0]m[1]) ); // cout << var1 << ' ' << var2 << endl; int temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0]; // temp2 contains the value of the modulus // in the new equation which will be the // product of the modulii of the two // equations that we are combining int temp2 = m[0] * m[1]; // cout << temp1<< ' '< // we then remove the first two elements // from the list of remainders and replace // it with the remainder value which will // be temp1 % temp2 x.erase(x.begin()); x.erase(x.begin()); x.insert(x.begin() temp1%temp2); //we then remove the first two values from //the list of modulii as we no longer require // them and simply replace them with the new // modulii that we calculated m.erase(m.begin()); m.erase(m.begin()); m.insert(m.begin() temp2); // once the list has only one element left // we can break as it will only contain // the value of our final remainder if(x.size()== 1){ break; } } // returns the remainder of the final equation return x[0]; } // driver segment int main(){ vector<int> m = {4 7 9 11}; vector<int> x = {3 4 1 0}; cout << crt(m x) << endl; return 0; } // The code is contributed by Gautam goel (gautamgoe962)
Java // Java program to implement the Chinese Remainder Theorem import java.util.ArrayList; import java.math.BigInteger; public class ChineseRemainderTheorem { // Function to calculate the modular inverse of a and m public static BigInteger modinv(BigInteger a BigInteger m) { BigInteger m0 = m; BigInteger y = BigInteger.ZERO; BigInteger x = BigInteger.ONE; if (m.equals(BigInteger.ONE)) return BigInteger.ZERO; while (a.compareTo(BigInteger.ONE) == 1) { BigInteger q = a.divide(m); BigInteger t = m; m = a.mod(m); a = t; t = y; y = x.subtract(q.multiply(y)); x = t; } if (x.compareTo(BigInteger.ZERO) == -1) x = x.add(m0); return x; } // Function to implement the Chinese Remainder Theorem public static BigInteger crt(ArrayList<BigInteger> m ArrayList<BigInteger> x) { BigInteger M = BigInteger.ONE; for (int i = 0; i < m.size(); i++) { M = M.multiply(m.get(i)); } BigInteger result = BigInteger.ZERO; for (int i = 0; i < m.size(); i++) { BigInteger Mi = M.divide(m.get(i)); BigInteger MiInv = modinv(Mi m.get(i)); result = result.add(x.get(i).multiply(Mi).multiply(MiInv)); } return result.mod(M); } public static void main(String[] args) { ArrayList<BigInteger> m = new ArrayList<>(); ArrayList<BigInteger> x = new ArrayList<>(); m.add(BigInteger.valueOf(4)); m.add(BigInteger.valueOf(7)); m.add(BigInteger.valueOf(9)); m.add(BigInteger.valueOf(11)); x.add(BigInteger.valueOf(3)); x.add(BigInteger.valueOf(4)); x.add(BigInteger.valueOf(1)); x.add(BigInteger.valueOf(0)); System.out.println(crt(m x)); } } // This code is contributed by Vikram_Shirsat
Python # Python 2.x program to combine modular equations # using Chinese Remainder Theorem # function that implements Extended euclidean # algorithm def extended_euclidean(a b): if a == 0: return (b 0 1) else: g y x = extended_euclidean(b % a a) return (g x - (b // a) * y y) # modular inverse driver function def modinv(a m): g x y = extended_euclidean(a m) return x % m # function implementing Chinese remainder theorem # list m contains all the modulii # list x contains the remainders of the equations def crt(m x): # We run this loop while the list of # remainders has length greater than 1 while True: # temp1 will contain the new value # of A. which is calculated according # to the equation m1' * m1 * x0 + m0' # * m0 * x1 temp1 = modinv(m[1]m[0]) * x[0] * m[1] + modinv(m[0]m[1]) * x[1] * m[0] # temp2 contains the value of the modulus # in the new equation which will be the # product of the modulii of the two # equations that we are combining temp2 = m[0] * m[1] # we then remove the first two elements # from the list of remainders and replace # it with the remainder value which will # be temp1 % temp2 x.remove(x[0]) x.remove(x[0]) x = [temp1 % temp2] + x # we then remove the first two values from # the list of modulii as we no longer require # them and simply replace them with the new # modulii that we calculated m.remove(m[0]) m.remove(m[0]) m = [temp2] + m # once the list has only one element left # we can break as it will only contain # the value of our final remainder if len(x) == 1: break # returns the remainder of the final equation return x[0] # driver segment m = [4 7 9 11] x = [3 4 1 0] print crt(m x)
C# using System; using System.Collections; using System.Collections.Generic; using System.Linq; // C# program to combine modular equations // using Chinese Remainder Theorem class HelloWorld { // function that implements Extended euclidean // algorithm public static List<int> extended_euclidean(int aint b){ if(a == 0){ List<int> temp = new List<int>(); temp.Add(b); temp.Add(0); temp.Add(1); return temp; } else{ List<int> temp = new List<int>(); temp.Add(0); temp.Add(0); temp.Add(0); temp= extended_euclidean(b % a a); int g = temp[0]; int y = temp[1]; int x = temp[2]; temp[0] = g; temp[1] = x - ((b/a) * y); temp[2] = y; return temp; } List<int> temp1 = new List<int>(); return temp1; } // modular inverse driver function public static double modinv(int aint m){ List<int> temp = new List<int>(); temp.Add(0); temp.Add(0); temp.Add(0); temp = extended_euclidean(a m); int g = temp[0]; int x = temp[1]; int y = temp[2]; // Since we are taking the modulo of // negative numbers so to have positive // output of the modulo we use this formula. double val = Math.Floor(((double)x/(double)m)); double ans = x - (val * m); return ans; } // function implementing Chinese remainder theorem // list m contains all the modulii // list x contains the remainders of the equations public static int crt(List<int> mList<int> x) { // We run this loop while the list of // remainders has length greater than 1 while(true) { // temp1 will contain the new value // of A. which is calculated according // to the equation m1' * m1 * x0 + m0' // * m0 * x1 double var1 = (modinv(m[1]m[0])); double var2 = (modinv(m[0]m[1])); // cout << var1 << ' ' << var2 << endl; double temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0]; // temp2 contains the value of the modulus // in the new equation which will be the // product of the modulii of the two // equations that we are combining int temp2 = m[0] * m[1]; // cout << temp1<< ' '< // we then remove the first two elements // from the list of remainders and replace // it with the remainder value which will // be temp1 % temp2 x.RemoveAt(0); x.RemoveAt(0); x.Insert(0 (int)temp1%(int)temp2); //we then remove the first two values from //the list of modulii as we no longer require // them and simply replace them with the new // modulii that we calculated m.RemoveAt(0); m.RemoveAt(0); m.Insert(0 temp2); // once the list has only one element left // we can break as it will only contain // the value of our final remainder if(x.Count == 1){ break; } } // returns the remainder of the final equation return x[0]; } static void Main() { List<int> m = new List<int>(){ 4 7 9 11 }; List<int> x = new List<int> (){ 3 4 1 0 }; Console.WriteLine(crt(m x)); } } // The code is contributed by Nidhi goel.
JavaScript // JavaScript program to combine modular equations // using Chinese Remainder Theorem // function that implements Extended euclidean // algorithm function extended_euclidean(a b){ if(a == 0){ let temp = [b 0 1]; return temp; } else{ let temp= extended_euclidean(b % a a); let g = temp[0]; let y = temp[1]; let x = temp[2]; temp[0] = g; temp[1] = x - (Math.floor(b/a) * y); temp[2] = y; return temp; } let temp; return temp; } // modular inverse driver function function modinv(a m){ let temp = extended_euclidean(a m); let g = temp[0]; let x = temp[1]; let y = temp[2]; // Since we are taking the modulo of // negative numbers so to have positive // output of the modulo we use this formula. let ans = x - (Math.floor(x/m) * m); return ans; } // function implementing Chinese remainder theorem // list m contains all the modulii // list x contains the remainders of the equations function crt(m x) { // We run this loop while the list of // remainders has length greater than 1 while(1) { // temp1 will contain the new value // of A. which is calculated according // to the equation m1' * m1 * x0 + m0' // * m0 * x1 let var1 = (modinv(m[1]m[0])); let var2 = (modinv(m[0]m[1]) ); // cout << var1 << ' ' << var2 << endl; let temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0]; // temp2 contains the value of the modulus // in the new equation which will be the // product of the modulii of the two // equations that we are combining let temp2 = m[0] * m[1]; // cout << temp1<< ' '< // we then remove the first two elements // from the list of remainders and replace // it with the remainder value which will // be temp1 % temp2 x.shift(); x.shift(); x.unshift(temp1 % temp2); //we then remove the first two values from //the list of modulii as we no longer require // them and simply replace them with the new // modulii that we calculated m.shift(); m.shift(); m.unshift(temp2); // once the list has only one element left // we can break as it will only contain // the value of our final remainder if(x.length== 1){ break; } } // returns the remainder of the final equation return x[0]; } // driver segment let m = [4 7 9 11]; let x = [3 4 1 0]; console.log(crt(m x)); // The code is contributed by phasing17
Producción:
1243
Complejidad del tiempo: O(l) donde l es el tamaño de la lista restante.
Complejidad espacial: O(1) ya que no estamos usando ningún espacio adicional.
mapa java
Este teorema y algoritmo tiene excelentes aplicaciones. Una aplicación muy útil es el cálculo.nortedor% m donde m no es un número primo y Teorema de Lucas no se puede aplicar directamente. En tal caso podemos calcular los factores primos de my usar los factores primos uno por uno como módulo en nuestronortedor% m ecuación que podemos calcular usando el teorema de Lucas y luego combinar las ecuaciones resultantes usando el teorema chino del resto que se muestra arriba.
Crear cuestionario