Dado un número n, imprima los primeros n enteros positivos con exactamente dos bits configurados en su representación binaria.
Ejemplos:
Input: n = 3
Output: 3 5 6
The first 3 numbers with two set bits are 3 (0011)
5 (0101) and 6 (0110)
Input: n = 5
Output: 3 5 6 9 10 12
A Solución sencilla es considerar todos los números enteros positivos uno por uno a partir de 1. Para cada número, verifique si tiene exactamente dos conjuntos de bits. Si un número tiene exactamente dos bits configurados, imprímalo e incremente el recuento de dichos números.
Un Solución eficiente es generar directamente tales números. Si observamos claramente los números, podemos reescribirlos como se indica a continuación pow(21)+pow(20) pow(22)+pow(20) pow(22)+pow(21) pow(23)+pow(20) pow(23)+pow(21) pow(23)+pow(22) .........
Todos los números se pueden generar en orden creciente según el mayor de los dos bits establecidos. La idea es arreglar dos bits uno por uno. Para el bit establecido más alto actual, considere todos los bits más bajos e imprima los números formados.
C++
// C++ program to print first n numbers // with exactly two set bits #include using namespace std; // Prints first n numbers with two set bits void printTwoSetBitNums(int n) { // Initialize higher of two sets bits int x = 1; // Keep reducing n for every number // with two set bits. while (n > 0) { // Consider all lower set bits for // current higher set bit int y = 0; while (y < x) { // Print current number cout << (1 << x) + (1 << y) << ' '; // If we have found n numbers n--; if (n == 0) return; // Consider next lower bit for current // higher bit. y++; } // Increment higher set bit x++; } } // Driver code int main() { printTwoSetBitNums(4); return 0; }
Java // Java program to print first n numbers // with exactly two set bits import java.io.*; class GFG { // Function to print first n numbers with two set bits static void printTwoSetBitNums(int n) { // Initialize higher of two sets bits int x = 1; // Keep reducing n for every number // with two set bits while (n > 0) { // Consider all lower set bits for // current higher set bit int y = 0; while (y < x) { // Print current number System.out.print(((1 << x) + (1 << y)) +' '); // If we have found n numbers n--; if (n == 0) return; // Consider next lower bit for current // higher bit. y++; } // Increment higher set bit x++; } } // Driver program public static void main (String[] args) { int n = 4; printTwoSetBitNums(n); } } // This code is contributed by Pramod Kumar
Python3 # Python3 program to print first n # numbers with exactly two set bits # Prints first n numbers # with two set bits def printTwoSetBitNums(n) : # Initialize higher of # two sets bits x = 1 # Keep reducing n for every # number with two set bits. while (n > 0) : # Consider all lower set bits # for current higher set bit y = 0 while (y < x) : # Print current number print((1 << x) + (1 << y) end = ' ' ) # If we have found n numbers n -= 1 if (n == 0) : return # Consider next lower bit # for current higher bit. y += 1 # Increment higher set bit x += 1 # Driver code printTwoSetBitNums(4) # This code is contributed # by Smitha
C# // C# program to print first n numbers // with exactly two set bits using System; class GFG { // Function to print first n // numbers with two set bits static void printTwoSetBitNums(int n) { // Initialize higher of // two sets bits int x = 1; // Keep reducing n for every // number with two set bits while (n > 0) { // Consider all lower set bits // for current higher set bit int y = 0; while (y < x) { // Print current number Console.Write(((1 << x) + (1 << y)) +' '); // If we have found n numbers n--; if (n == 0) return; // Consider next lower bit // for current higher bit. y++; } // Increment higher set bit x++; } } // Driver program public static void Main() { int n = 4; printTwoSetBitNums(n); } } // This code is contributed by Anant Agarwal.
JavaScript <script> // Javascript program to print first n numbers // with exactly two set bits // Prints first n numbers with two set bits function printTwoSetBitNums(n) { // Initialize higher of two sets bits let x = 1; // Keep reducing n for every number // with two set bits. while (n > 0) { // Consider all lower set bits for // current higher set bit let y = 0; while (y < x) { // Print current number document.write((1 << x) + (1 << y) + ' '); // If we have found n numbers n--; if (n == 0) return; // Consider next lower bit for current // higher bit. y++; } // Increment higher set bit x++; } } // Driver code printTwoSetBitNums(4); // This code is contributed by Mayank Tyagi </script>
PHP // PHP program to print // first n numbers with // exactly two set bits // Prints first n numbers // with two set bits function printTwoSetBitNums($n) { // Initialize higher of // two sets bits $x = 1; // Keep reducing n for // every number with // two set bits. while ($n > 0) { // Consider all lower set // bits for current higher // set bit $y = 0; while ($y < $x) { // Print current number echo (1 << $x) + (1 << $y) ' '; // If we have found n numbers $n--; if ($n == 0) return; // Consider next lower // bit for current // higher bit. $y++; } // Increment higher set bit $x++; } } // Driver code printTwoSetBitNums(4); // This code is contributed by Ajit ?> Producción :
ejemplo de clase java
3 5 6 9
Complejidad del tiempo: En)
clave compuesta de clave primaria
Espacio Auxiliar: O(1)
Enfoque n.° 2: usar while y join
El enfoque consiste en comenzar desde el número entero 3 y comprobar si el número de bits establecidos en su representación binaria es igual a 2 o no. Si tiene exactamente 2 bits configurados, agréguelo a la lista de números con 2 bits configurados hasta que la lista tenga n elementos.
Algoritmo
1. Inicialice una lista vacía res para almacenar los números enteros con exactamente dos bits establecidos.
2. Inicialice una variable entera i a 3.
3. Mientras la longitud de la lista res sea menor que n, haga lo siguiente:
a. Compruebe si el número de bits establecidos en la representación binaria de i es igual a 2 o no utilizando el método count() de la cadena.
b. Si el número de bits configurados es igual a 2, agregue i a la lista res.
do. Incrementar i en 1.
4. Devuelve la lista res.
agregando a la matriz javaC++
#include #include using namespace std; int countSetBits(int num) { int count = 0; while (num > 0) { count += num & 1; num >>= 1; } return count; } vector<int> numbersWithTwoSetBits(int n) { vector<int> res; int i = 3; while (res.size() < n) { if (countSetBits(i) == 2) { res.push_back(i); } i++; } return res; } int main() { int n = 3; vector<int> result = numbersWithTwoSetBits(n); cout << 'Result: '; for (int i = 0; i < result.size(); i++) { cout << result[i] << ' '; } cout << endl; return 0; }
Java // Java program for the above approach import java.util.ArrayList; import java.util.List; public class GFG { // Function to count the number of set bits (binary 1s) // in an integer static int countSetBits(int num) { int count = 0; while (num > 0) { count += num & 1; // Increment count if the last // bit is set (1) num >>= 1; // Right shift to check the next bit } return count; } // Function to generate 'n' numbers with exactly two set // bits in their binary representation static List<Integer> numbersWithTwoSetBits(int n) { List<Integer> res = new ArrayList<>(); int i = 3; // Start from 3 as the first number with // two set bits while (res.size() < n) { if (countSetBits(i) == 2) { // Check if the number has exactly // two set bits res.add( i); // Add the number to the result list } i++; // Move to the next number } return res; } public static void main(String[] args) { int n = 3; // Number of numbers with two set bits to // generate List<Integer> result = numbersWithTwoSetBits( n); // Get the generated numbers for (int num : result) { System.out.print( num + ' '); // Display the generated numbers } System.out.println(); } } // This code is contributed by Susobhan Akhuli
Python3 def numbersWithTwoSetBits(n): res = [] i = 3 while len(res) < n: if bin(i).count('1') == 2: res.append(i) i += 1 return res n = 3 result = numbersWithTwoSetBits(n) output_string = ' '.join(str(x) for x in result) print(output_string)
C# using System; using System.Collections.Generic; class Program { // Function to count the number of set bits (binary 1s) in an integer static int CountSetBits(int num) { int count = 0; while (num > 0) { count += num & 1; // Increment count if the last bit is set (1) num >>= 1; // Right shift to check the next bit } return count; } // Function to generate 'n' numbers with exactly two set bits in their binary representation static List<int> NumbersWithTwoSetBits(int n) { List<int> res = new List<int>(); int i = 3; // Start from 3 as the first number with two set bits while (res.Count < n) { if (CountSetBits(i) == 2) // Check if the number has exactly two set bits { res.Add(i); // Add the number to the result list } i++; // Move to the next number } return res; } static void Main(string[] args) { int n = 3; // Number of numbers with two set bits to generate List<int> result = NumbersWithTwoSetBits(n); // Get the generated numbers Console.Write('Result: '); foreach (int num in result) { Console.Write(num + ' '); // Display the generated numbers } Console.WriteLine(); } }
JavaScript // Javascript program for the above approach // Function to count the number of set bits (binary 1s) // in an integer function countSetBits(num) { let count = 0; while (num > 0) { count += num & 1; // Increment count if the last // bit is set (1) num >>= 1; // Right shift to check the next bit } return count; } // Function to generate 'n' numbers with exactly two set // bits in their binary representation function numbersWithTwoSetBits(n) { let res = []; let i = 3; // Start from 3 as the first number with // two set bits while (res.length < n) { if (countSetBits(i) === 2) { // Check if the number has exactly // two set bits res.push(i); // Add the number to the result list } i++; // Move to the next number } return res; } // Number of numbers with two set bits to generate let n = 3; // Get the generated numbers let result = numbersWithTwoSetBits(n); // Display the generated numbers console.log(result.join(' ')); // This code is contributed by Susobhan Akhuli
Producción
3 5 6
Complejidad del tiempo: O (n log n) donde n es el número de números enteros con exactamente dos bits configurados. Esto se debe a que estamos verificando el número de bits establecidos en la representación binaria de cada número entero, lo que toma O (log n) tiempo.
Complejidad espacial: O(n) donde n es el número de números enteros con exactamente dos bits configurados. Esto se debe a que estamos almacenando la lista de números enteros con dos bits configurados en la memoria.