OpenGL es una API multiplataforma en varios idiomas para renderizar gráficos vectoriales 2D y 3D. Usando esto podemos hacer una gran cantidad de diseños y animaciones. A continuación se muestra la animación simple realizada usando OpenGL .
Acercarse :
Para hacer que una imagen se mueva, debemos comprender el procedimiento de funcionamiento de una función utilizada para mostrar, es decir glBorrar(GL_COLOR_BUFFER_BIT) . Su tarea es borrar la pantalla con el valor predeterminado después de un tiempo determinado (normalmente después de 1/30 s o 1/60 s). Entonces, si ocurre algún cambio de coordenadas, parecerá que se está moviendo, ya que el ojo humano solo puede distinguir la imagen que está separada por 1/16 de segundo (persistencia de la visión).
Ahora las coordenadas del círculo son X = r*cos(?) e Y = r*sin(?) o para la elipse X = rx*cos(?) e Y = ry*cos(?) donde rx y ry son radios en las direcciones X e Y y ? es el ángulo.
si variamos ? de 0 a 2*pi (360 grados) con un aumento muy pequeño (digamos de 1 grado) y dibujando un punto en esa coordenada podemos hacer un círculo o elipse completo. También podemos hacer un semicírculo o cualquier arco de círculo o elipse variando el valor inicial y final de ? (ángulo).
Estos conceptos se utilizan para dibujar la siguiente animación:
- Se utilizan 7 partes horizontales de elipse y 3 elipses verticales completas, así como 1 círculo exterior y una elipse exterior para visualizar una órbita dibujada ajustando el ? así como el radio.
- Se dibuja una línea vertical para hacer la figura. Luego, para hacer que se mueva, se proporciona otro bucle donde el valor de j cambia en una cantidad muy pequeña para hacer el movimiento más suave.
- Como teníamos que hacer que todos los puntos se movieran con el mismo tipo de movimiento para mantener la figura unida, entonces la ecuación de movimiento es Glyx2i(x/2 - 600*cos(j) de/2 - 100*sin(j)) se da dentro de cada interior para bucle para que pueda aplicarse a todos los puntos en conjunto.
Para trabajar en el sistema operativo Ubuntu:
gcc filename.c -lGL -lGLU -lglut -lm where filename.c is the name of the file with which this program is saved.
A continuación se muestra la implementación en C.
// C Program to illustrate // OpenGL animation for revolution #include #include #include // global declaration int x y; float i j; // Initialization function void myInit (void) { // Reset background color with black (since all three argument is 0.0) glClearColor(0.0 0.0 0.0 1.0); // Set picture color to green (in RGB model) // as only argument corresponding to G (Green) is 1.0 and rest are 0.0 glColor3f(0.0 1.0 0.0); // Set width of point to one unit glPointSize(1.0); glMatrixMode(GL_PROJECTION); glLoadIdentity(); // Set window size in X- and Y- direction gluOrtho2D(-780 780 -420 420); } // Function to display animation void display (void) { // Outer loop to make figure moving // loop variable j iterated up to 10000 // indicating that figure will be in motion for large amount of time // around 10000/6.29 = 1590 time it will revolve // j is incremented by small value to make motion smoother for (j = 0; j < 10000; j += 0.01) { glClear(GL_COLOR_BUFFER_BIT); glBegin(GL_POINTS); // Iterate i up to 2*pi i.e. 360 degree // plot point with slight increment in angle // so it will look like a continuous figure // Loop is to draw outer circle for (i = 0;i < 6.29;i += 0.001) { x = 200 * cos(i); y = 200 * sin(i); glVertex2i(x y); // For every loop 2nd glVertex function is // to make smaller figure in motion glVertex2i(x / 2 - 600 * cos(j) y / 2 - 100 * sin(j)); } // 7 loops to draw parallel latitude for (i = 1.17; i < 1.97; i += 0.001) { x = 400 * cos(i); y = -150 + 300 * sin(i); glVertex2i(x y); glVertex2i(x / 2 - 600 * cos(j) y / 2 - 100 * sin(j)); } for (i = 1.07; i < 2.07; i += 0.001) { x = 400 * cos(i); y = -200 + 300 * sin(i); glVertex2i(x y); glVertex2i(x / 2 - 600 * cos(j) y / 2 - 100 * sin(j)); } for (i = 1.05; i < 2.09; i += 0.001) { x = 400 * cos(i); y = -250 + 300 * sin(i); glVertex2i(x y); glVertex2i(x / 2 - 600 * cos(j) y / 2 - 100 * sin(j)); } for (i = 1.06; i < 2.08; i += 0.001) { x = 400 * cos(i); y = -300 + 300 * sin(i); glVertex2i(x y); glVertex2i(x / 2 - 600 * cos(j) y / 2 - 100 * sin(j)); } for (i = 1.10; i < 2.04; i += 0.001) { x = 400 * cos(i); y = -350 + 300 * sin(i); glVertex2i(x y); glVertex2i(x / 2 - 600 * cos(j) y / 2 - 100 * sin(j)); } for (i = 1.16; i < 1.98; i += 0.001) { x = 400 * cos(i); y = -400 + 300 * sin(i); glVertex2i(x y); glVertex2i(x / 2 - 600 * cos(j) y / 2 - 100 * sin(j)); } for (i = 1.27; i < 1.87; i += 0.001) { x = 400 * cos(i); y = -450 + 300 * sin(i); glVertex2i(x y); glVertex2i(x / 2 - 600 * cos(j) y / 2 - 100 * sin(j)); } // Loop is to draw vertical line for (i = 200; i >=- 200; i--) { glVertex2i(0 i); glVertex2i(-600 * cos(j) i / 2 - 100 * sin(j)); } // 3 loops to draw vertical ellipse (similar to longitude) for (i = 0;i < 6.29; i += 0.001) { x = 70 * cos(i); y = 200 * sin(i); glVertex2i(x y); glVertex2i(x / 2 - 600 * cos(j) y / 2 - 100 * sin(j)); } for (i = 0; i < 6.29; i += 0.001) { x = 120 * cos(i); y = 200 * sin(i); glVertex2i(x y); glVertex2i(x / 2 - 600 * cos(j) y / 2 - 100 * sin(j)); } for (i = 0; i < 6.29; i += 0.001) { x = 160 * cos(i); y = 200 * sin(i); glVertex2i(x y); glVertex2i(x / 2 - 600 * cos(j) y / 2 - 100 * sin(j)); } // Loop to make orbit of revolution for (i = 0; i < 6.29; i += 0.001) { x = 600 * cos(i); y = 100 * sin(i); glVertex2i(x y); } glEnd(); glFlush(); } } // Driver Program int main (int argc char** argv) { glutInit(&argc argv); // Display mode which is of RGB (Red Green Blue) type glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); // Declares window size glutInitWindowSize(1360 768); // Declares window position which is (0 0) // means lower left corner will indicate position (0 0) glutInitWindowPosition(0 0); // Name to window glutCreateWindow('Revolution'); // Call to myInit() myInit(); glutDisplayFunc(display); glutMainLoop(); }