logo

NumPy en Python | Conjunto 2 (avanzado)

NumPy en Python | Conjunto 1 (Introducción) Este artículo analiza algunos métodos más avanzados disponibles en NumPy.
    Apilado:Se pueden apilar varias matrices a lo largo de diferentes ejes.
      np.vstack:Para apilar matrices a lo largo del eje vertical. np.hstack:Para apilar matrices a lo largo del eje horizontal. np.column_stack:Para apilar matrices 1D como columnas en matrices 2D. np.concatenar:Para apilar matrices a lo largo del eje especificado (el eje se pasa como argumento).
    Python
    import numpy as np a = np.array([[1 2] [3 4]]) b = np.array([[5 6] [7 8]]) # vertical stacking print('Vertical stacking:n' np.vstack((a b))) # horizontal stacking print('nHorizontal stacking:n' np.hstack((a b))) c = [5 6] # stacking columns print('nColumn stacking:n' np.column_stack((a c))) # concatenation method  print('nConcatenating to 2nd axis:n' np.concatenate((a b) 1)) 
    Output:
    Vertical stacking: [[1 2] [3 4] [5 6] [7 8]] Horizontal stacking: [[1 2 5 6] [3 4 7 8]] Column stacking: [[1 2 5] [3 4 6]] Concatenating to 2nd axis: [[1 2 5 6] [3 4 7 8]]
    Terrible:Para dividir tenemos estas funciones:
      np.hsplit:Dividir la matriz a lo largo del eje horizontal. np.vsplit:Dividir la matriz a lo largo del eje vertical. np.array_split:Dividir la matriz a lo largo del eje especificado.
    Python
    import numpy as np a = np.array([[1 3 5 7 9 11] [2 4 6 8 10 12]]) # horizontal splitting print('Splitting along horizontal axis into 2 parts:n' np.hsplit(a 2)) # vertical splitting print('nSplitting along vertical axis into 2 parts:n' np.vsplit(a 2)) 
    Output:
    Splitting along horizontal axis into 2 parts: [array([[1 3 5] [2 4 6]]) array([[ 7 9 11] [ 8 10 12]])] Splitting along vertical axis into 2 parts: [array([[ 1 3 5 7 9 11]]) array([[ 2 4 6 8 10 12]])]
    Radiodifusión:El término transmisión describe cómo NumPy trata matrices con diferentes formas durante operaciones aritméticas. Sujeto a ciertas restricciones, la matriz más pequeña se "transmite" a través de la matriz más grande para que tengan formas compatibles. La transmisión proporciona un medio para vectorizar operaciones de matrices para que el bucle se produzca en C en lugar de Python. Lo hace sin realizar copias innecesarias de datos y, por lo general, conduce a implementaciones de algoritmos eficientes. También hay casos en los que la transmisión es una mala idea porque conduce a un uso ineficiente de la memoria que ralentiza el cálculo. Las operaciones NumPy generalmente se realizan elemento por elemento, lo que requiere que dos matrices tengan exactamente la misma forma. La regla de transmisión de Numpy relaja esta restricción cuando las formas de las matrices cumplen ciertas restricciones. La regla de radiodifusión: Para transmitir, el tamaño de los ejes finales para ambas matrices en una operación debe ser del mismo tamaño o uno de ellos debe ser uno . Let us see some examples:
    A(2-D array): 4 x 3 B(1-D array): 3 Result : 4 x 3 
    A(4-D array): 7 x 1 x 6 x 1 B(3-D array): 3 x 1 x 5 Result : 7 x 3 x 6 x 5 
    But this would be a mismatch:
    A: 4 x 3 B: 4 
    The simplest broadcasting example occurs when an array and a scalar value are combined in an operation. Consider the example given below: Python
    import numpy as np a = np.array([1.0 2.0 3.0]) # Example 1 b = 2.0 print(a * b) # Example 2 c = [2.0 2.0 2.0] print(a * c) 
    Output:
    [ 2. 4. 6.] [ 2. 4. 6.]
    We can think of the scalar b being stretched during the arithmetic operation into an array with the same shape as a. The new elements in b as shown in above figure are simply copies of the original scalar. Although the stretching analogy is only conceptual. Numpy is smart enough to use the original scalar value without actually making copies so that broadcasting operations are as memory and computationally efficient as possible. Because Example 1 moves less memory (b is a scalar not an array) around during the multiplication it is about 10% faster than Example 2 using the standard numpy on Windows 2000 with one million element arrays! The figure below makes the concept more clear: NumPy en Python | Conjunto 2 (avanzado) In above example the scalar b is stretched to become an array of with the same shape as a so the shapes are compatible for element-by-element multiplication. Now let us see an example where both arrays get stretched. Python
    import numpy as np a = np.array([0.0 10.0 20.0 30.0]) b = np.array([0.0 1.0 2.0]) print(a[: np.newaxis] + b) 
    Output:
    [[ 0. 1. 2.] [ 10. 11. 12.] [ 20. 21. 22.] [ 30. 31. 32.]] 
    NumPy en Python | Conjunto 2 (avanzado)' hight='350' title=En algunos casos, la difusión extiende ambas matrices para formar una matriz de salida más grande que cualquiera de las matrices iniciales. Trabajando con fecha y hora: Numpy has core array data types which natively support datetime functionality. The data type is called datetime64 so named because datetime is already taken by the datetime library included in Python. Consider the example below for some examples: Python
    import numpy as np # creating a date today = np.datetime64('2017-02-12') print('Date is:' today) print('Year is:' np.datetime64(today 'Y')) # creating array of dates in a month dates = np.arange('2017-02' '2017-03' dtype='datetime64[D]') print('nDates of February 2017:n' dates) print('Today is February:' today in dates) # arithmetic operation on dates dur = np.datetime64('2017-05-22') - np.datetime64('2016-05-22') print('nNo. of days:' dur) print('No. of weeks:' np.timedelta64(dur 'W')) # sorting dates a = np.array(['2017-02-12' '2016-10-13' '2019-05-22'] dtype='datetime64') print('nDates in sorted order:' np.sort(a)) 
    Output:
    Date is: 2017-02-12 Year is: 2017 Dates of February 2017: ['2017-02-01' '2017-02-02' '2017-02-03' '2017-02-04' '2017-02-05' '2017-02-06' '2017-02-07' '2017-02-08' '2017-02-09' '2017-02-10' '2017-02-11' '2017-02-12' '2017-02-13' '2017-02-14' '2017-02-15' '2017-02-16' '2017-02-17' '2017-02-18' '2017-02-19' '2017-02-20' '2017-02-21' '2017-02-22' '2017-02-23' '2017-02-24' '2017-02-25' '2017-02-26' '2017-02-27' '2017-02-28'] Today is February: True No. of days: 365 days No. of weeks: 52 weeks Dates in sorted order: ['2016-10-13' '2017-02-12' '2019-05-22']
    Álgebra lineal en NumPy:El módulo de Álgebra lineal de NumPy ofrece varios métodos para aplicar álgebra lineal en cualquier matriz numpy. Puedes encontrar:
    • traza determinante de rango, etc. de una matriz.
    • valores propios o matrices
    • productos matriciales y vectoriales (producto punto interior exterior, etc.) exponenciación matricial
    • resuelve ecuaciones lineales o tensoriales y mucho más!
    Consider the example below which explains how we can use NumPy to do some matrix operations. Python
    import numpy as np A = np.array([[6 1 1] [4 -2 5] [2 8 7]]) print('Rank of A:' np.linalg.matrix_rank(A)) print('nTrace of A:' np.trace(A)) print('nDeterminant of A:' np.linalg.det(A)) print('nInverse of A:n' np.linalg.inv(A)) print('nMatrix A raised to power 3:n' np.linalg.matrix_power(A 3)) 
    Output:
    Rank of A: 3 Trace of A: 11 Determinant of A: -306.0 Inverse of A: [[ 0.17647059 -0.00326797 -0.02287582] [ 0.05882353 -0.13071895 0.08496732] [-0.11764706 0.1503268 0.05228758]] Matrix A raised to power 3: [[336 162 228] [406 162 469] [698 702 905]]
    Let us assume that we want to solve this linear equation set:
    x + 2*y = 8 3*x + 4*y = 18 
    This problem can be solved using nalg.solve method as shown in example below: Python
    import numpy as np # coefficients a = np.array([[1 2] [3 4]]) # constants b = np.array([8 18]) print('Solution of linear equations:' np.linalg.solve(a b)) 
    Output:
    Solution of linear equations: [ 2. 3.]
    Finally we see an example which shows how one can perform linear regression using least squares method. A linear regression line is of the form w1 x+w 2 = y y es la recta que minimiza la suma de los cuadrados de la distancia desde cada punto de datos a la recta. Entonces, dados n pares de datos (xi yi), los parámetros que buscamos son w1 y w2, que minimizan el error: NumPy en Python | Conjunto 2 (avanzado)' title= Let us have a look at the example below: Python
    import numpy as np import matplotlib.pyplot as plt # x co-ordinates x = np.arange(0 9) A = np.array([x np.ones(9)]) # linearly generated sequence y = [19 20 20.5 21.5 22 23 23 25.5 24] # obtaining the parameters of regression line w = np.linalg.lstsq(A.T y)[0] # plotting the line line = w[0]*x + w[1] # regression line plt.plot(x line 'r-') plt.plot(x y 'o') plt.show() 
    Output: ' title=
Esto lleva a la conclusión de esta serie de tutoriales de NumPy. NumPy es una biblioteca de propósito general ampliamente utilizada que es el núcleo de muchas otras bibliotecas de cálculo como scipy scikit-learn tensorflow matplotlib opencv, etc. Tener un conocimiento básico de NumPy ayuda a tratar con otras bibliotecas de nivel superior de manera eficiente. Referencias: Crear cuestionario