logo

Gráfico de Java

En Java, el Grafico es una estructura de datos que almacena una cierta cantidad de datos. El concepto de la grafico ha sido robado de las matemáticas que satisface las necesidades del campo de la informática. Representa una red que conecta múltiples puntos entre sí. En esta sección, aprenderemos en detalle la estructura de datos de Java Graph. Además, aprenderemos el tipos de grafico , su implementación y el recorrido sobre el gráfico.

Grafico

A grafico es una terminología gráfica

Vértice: Los vértices son el punto que une las aristas. Representa los datos. También se le conoce como nodo. Se indica con un círculo y debe estar etiquetado. Para construir un gráfico debe haber al menos un nodo. Por ejemplo, casa, parada de autobús, etc.

columpio java

Borde: Una arista es una línea que conecta dos vértices. Representa la relación entre los vértices. Los bordes se indican con una línea. Por ejemplo, un camino hasta la parada de autobús desde tu casa.

Peso: Está etiquetado hasta el borde. Por ejemplo, la distancia entre dos ciudades es de 100 km, entonces la distancia se llama peso para el borde.

Camino: El camino es una forma de llegar a un destino desde el punto inicial de una secuencia.

Tipos de gráfico

    Gráfico ponderado:En un gráfico ponderado, cada arista contiene algunos datos (peso) como distancia, peso, altura, etc. Se denota como w(e). Se utiliza para calcular el costo de atravesar de un vértice a otro. La siguiente figura representa un gráfico ponderado.
    Gráfico de Java Gráfico no ponderado:Un gráfico en el que los bordes no están asociados con ningún valor se llama gráfico no ponderado. La siguiente figura representa un gráfico no ponderado.
    Gráfico de Java Gráfico dirigido:Un gráfico en el que los bordes representan la dirección se llama gráfico dirigido. En un gráfico dirigido, utilizamos flechas en lugar de líneas (aristas). La dirección denota la forma de llegar de un nodo a otro. Tenga en cuenta que en un gráfico dirigido, podemos movernos en una dirección o en ambas direcciones. La siguiente figura representa un gráfico dirigido.
    Gráfico de Java Gráfico no dirigido:Un gráfico en el que los bordes son bidireccionales se llama gráfico no dirigido. En un gráfico no dirigido, podemos recorrerlo en cualquier dirección. Tenga en cuenta que podemos utilizar el mismo camino de regreso por el que hemos atravesado. Mientras estamos en el grafo dirigido no podemos regresar por el mismo camino.
    Gráfico de Java Gráfico conectado:Se dice que un grafo es conexo si existe al menos un camino entre cada par de vértices. Tenga en cuenta que un gráfico con solo un vértice es un gráfico conexo.
    Gráfico de Java
    Hay dos tipos de gráficos conectados.
      Gráfico conectado semanal:Un gráfico en el que los nodos no pueden ser visitados por una sola ruta se denomina gráfico conectado semanal.
      Gráfico de Java Gráfico fuertemente conectado:Un gráfico en el que los nodos pueden ser visitados por una única ruta se denomina gráfico fuertemente conectado.
      Gráfico de Java
    Gráfico desconectado:Se dice que un gráfico está desconectado si no hay un camino entre un par de vértices y se llama gráfico desconectado. Un gráfico desconectado puede constar de dos o más gráficos conectados.
    Gráfico de Java Gráfico múltiple:Un gráfico que tiene múltiples aristas que conectan el mismo par de nodos. La siguiente figura representa un multigráfico.
    Gráfico de Java Gráfico denso:Un gráfico en el que el número de aristas está cerca del número máximo de aristas, se denomina gráfico denso. La siguiente figura representa un gráfico denso.
    Gráfico de Java Gráfico disperso:Un gráfico en el que el número de aristas está cerca del número mínimo de aristas, se denomina gráfico disperso. Puede ser un gráfico desconectado. La siguiente figura representa un gráfico escaso.
    Gráfico de Java

Implementación de gráficos Java

Para la implementación de gráficos en Java usaremos el Genérico clase. Para crear un objeto de clase Java genérico, utilizamos la siguiente sintaxis:

 BaseType obj = new BaseType (); 

Recuerde que no podemos utilizar tipos primitivos para el tipo de parámetro.

Creemos un programa Java que implemente Graph.

GraphImplementation.java

 import java.util.*; class Graph { //creating an object of the Map class that stores the edges of the graph private Map<t, list> map = new HashMap(); //the method adds a new vertex to the graph public void addNewVertex(T s) { map.put(s, new LinkedList()); } //the method adds an edge between source and destination public void addNewEdge(T source, T destination, boolean bidirectional) { // if (!map.containsKey(source)) addNewVertex(source); if (!map.containsKey(destination)) addNewVertex(destination); map.get(source).add(destination); if (bidirectional == true) { map.get(destination).add(source); } } //the method counts the number of vertices public void countVertices() { System.out.println(&apos;Total number of vertices: &apos;+ map.keySet().size()); } //the method counts the number of edges public void countEdges(boolean bidirection) { //variable to store number of edges int count = 0; for (T v : map.keySet()) { count = count + map.get(v).size(); } if (bidirection == true) { count = count / 2; } System.out.println(&apos;Total number of edges: &apos;+ count); } //checks a graph has vertex or not public void containsVertex(T s) { if (map.containsKey(s)) { System.out.println(&apos;The graph contains &apos;+ s + &apos; as a vertex.&apos;); } else { System.out.println(&apos;The graph does not contain &apos;+ s + &apos; as a vertex.&apos;); } } //checks a graph has edge or not //where s and d are the two parameters that represent source(vertex) and destination (vertex) public void containsEdge(T s, T d) { if (map.get(s).contains(d)) { System.out.println(&apos;The graph has an edge between &apos;+ s + &apos; and &apos; + d + &apos;.&apos;); } else { System.out.println(&apos;There is no edge between &apos;+ s + &apos; and &apos; + d + &apos;.&apos;); } } //prints the adjacencyS list of each vertex //here we have overridden the toString() method of the StringBuilder class @Override public String toString() { StringBuilder builder = new StringBuilder(); //foreach loop that iterates over the keys for (T v : map.keySet()) { builder.append(v.toString() + &apos;: &apos;); //foreach loop for getting the vertices for (T w : map.get(v)) { builder.append(w.toString() + &apos; &apos;); } builder.append(&apos;
&apos;); } return (builder.toString()); } } //creating a class in which we have implemented the driver code public class GraphImplementation { public static void main(String args[]) { //creating an object of the Graph class Graph graph=new Graph(); //adding edges to the graph graph.addNewEdge(0, 1, true); graph.addNewEdge(0, 4, true); graph.addNewEdge(1, 2, true); graph.addNewEdge(1, 3, false); graph.addNewEdge(1, 4, true); graph.addNewEdge(2, 3, true); graph.addNewEdge(2, 4, true); graph.addNewEdge(3, 0, true); graph.addNewEdge(2, 0, true); //prints the adjacency matrix that represents the graph System.out.println(&apos;Adjacency List for the graph:
&apos;+ graph.toString()); //counts the number of vertices in the graph graph.countVertices(); //counts the number of edges in the graph graph.countEdges(true); //checks whether an edge is present or not between the two specified vertices graph.containsEdge(3, 4); graph.containsEdge(2, 4); //checks whether vertex is present or not graph.containsVertex(3); graph.containsVertex(5); } } </t,>

Producción:

Gráfico de Java

Implementación de gráfico dirigido

DirectedGraph.java

 import java.util.*; //Creating a class named Edge that stores the edges of the graph class Edge { //the variable source and destination represent the vertices int s, d; //creating a constructor of the class Edge Edge(int s, int d) { this.s = s; this.d = d; } } //a class to represent a graph object class Graph { //note that we have created an adjacency list (i.e. List of List) List<list> adjlist = new ArrayList(); //creating a constructor of the class Graph that construct a graph public Graph(List edges) { int n = 0; //foreach loop that iterates over the edge for (Edge e: edges) { //determines the maximum numbered vertex n = Integer.max(n, Integer.max(e.s, e.d)); } //reserve the space for the adjacency list for (int i = 0; i <= 1 n; i++) { adjlist.add(i, new arraylist()); } adds the edges to undirected graph for (edge current: edges) allocate node in adjacency list from source destination adjlist.get(current.s).add(current.d); function print representation of a public static void showgraph(graph graph) int s="0;" determines size n="graph.adjlist.size();" while (s ' + d ')	'); system.out.println(); increments by s++; implementing driver code class directedgraph main (string args[]) creating edge(0, 1), edge(1, 2), edge(2, 4), edge(4, 1),new edge(3, 5), edge(5, 1)); construct given graph(edges); prints that represents graph.showgraph(graph); < pre> <p> <strong>Output:</strong> </p> <img src="//techcodeview.com/img/java-tutorial/19/java-graph-13.webp" alt="Java Graph"> <h2>Implementation of Weighted Graph</h2> <p> <strong>WeightedGraph.java</strong> </p> <pre> import java.util.*; //the class stores the edges of the graph class Edge { int s, d, w; //creating a constructor of the class Edge Edge(int src, int dest, int weight) { this.s = src; this.d = dest; this.w = weight; } } //a class to store adjacency list nodes class Node { int value, weight; //creating a constructor of the class Vertex Node(int value, int weight) { this.value = value; this.weight = weight; } //overrides the toString() method @Override public String toString() { return this.value + &apos; (&apos; + this.weight + &apos;)&apos;; } } //a class to represent a graph object class Graph { //note that we have created an adjacency list (i.e. List of List) List<list> adjlist = new ArrayList(); //creating a constructor of the class Graph that creates graph public Graph(List edges) { //find the maximum numbered vertex int n = 0; //iterates over the edges of the graph for (Edge e: edges) { //determines the maximum numbered vertex n = Integer.max(n, Integer.max(e.s, e.d)); } //reserve the space for the adjacency list for (int i = 0; i <= 1 n; i++) { adjlist.add(i, new arraylist()); } adds the edges to undirected graph for (edge e: edges) creating a node (from source destination) in adjacency list adjlist.get(e.s).add(new node(e.d, e.w)); uncomment following statement adj.get(e.dest).add(new node(e.src, e.weight)); method that prints of public static void printgraph(graph graph) int src="0;" n="graph.adjlist.size();" system.out.printf('adjacency is: '); while (src %s	', src, edge); system.out.println(); increments by src++; implementing driver code class weightedgraph main (string args[]) with their associated weight edge(1, 4, 3), edge(4, 2, 5), edge(2, 5, 10), edge(5, 1, 6), edge(3, 9), 1), 2)); creates declared above graph(edges); corresponding graph.printgraph(graph); < pre> <p> <strong>Output:</strong> </p> <img src="//techcodeview.com/img/java-tutorial/19/java-graph-14.webp" alt="Java Graph"> <h2>Graph Traversal</h2> <p>Traversal over the graph means visit each and every vertex and edge at least once. To traverse over the graph, Graph data structure provides two algorithms:</p> <ul> <li>Depth-First Search (DFS)</li> <li>Breadth-First Search (DFS)</li> </ul> <h3>Depth-First Search (DFS)</h3> <p> <a href="/dfs-algorithm">DFS algorithm</a> is a recursive algorithm that is based on the backtracking concept. The algorithm starts from the initial node and searches in depth until it finds the goal node (a node that has no child). Backtracking allows us to move in the backward direction on the same path from which we have traversed in the forward direction.</p> <p>Let&apos;s implement the DFS algorithm in a Java program.</p> <p> <strong>DepthFirstSearch.java</strong> </p> <pre> import java.io.*; import java.util.*; //creates an undirected graph class Graph { //stores the number of vertices private int Vertices; //creates a linked list for the adjacency list of the graph private LinkedList adjlist[]; //creating a constructor of the Graph class Graph(int count_v) { //assigning the number of vertices to the passed parameter Vertices = count_v; adjlist = new LinkedList[count_v]; //loop for creating the adjacency lists for (int i=0; i<count_v; 3 10 ++i) adjlist[i]="new" linkedlist(); } method that adds a new edge to the graph void addnewedge(int v, int w) { adjlist[v].add(w); add w v's list. logic of dfs traversal starts from root node traversaldfs(int boolean vnodelist[]) if current (root node) is visited, it vnodelist vnodelist[v]="true;" system.out.print(v+' '); detrmines negihboring nodes iterates over list iterator i="adjlist[v].listIterator();" while (i.hasnext()) returns next element in iteration and store variable n (!vnodelist[n]) calling function performs depth first traversaldfs(n, vnodelist); dfs(int v) creates an array type for visited initially all are unvisited visited[]="new" boolean[vertices]; call recursive traversaldfs() traversaldfs(v, visited); implementing driver code public class depthfirstsearch static main(string args[]) having vertices g="new" graph(10); edges g.addnewedge(1, 2); g.addnewedge(2, 3); g.addnewedge(3, 4); g.addnewedge(4, 5); g.addnewedge(5, 7); 6); print sequencnce which bfs done system.out.println('depth-first is: (as g.dfs(1); < pre> <p> <strong>Output:</strong> </p> <img src="//techcodeview.com/img/java-tutorial/19/java-graph-15.webp" alt="Java Graph"> <h3>Breadth First Search (BFS)</h3> <p> <a href="/bfs-algorithm">BFS algorithm</a> is the most common approach to traverse over the graph. The traversal starts from the source node and scans its neighboring nodes (child of the current node). In short, traverse horizontally and visit all the nodes of the current layer. After that, move to the next layer and perform the same.</p> <p>Let&apos;s implement the BFS algorithm in a Java program.</p> <p> <strong>BreadthFirstSearch.java</strong> </p> <pre> import java.io.*; import java.util.*; //creates an undirected graph class Graph { //stores the number of vertices private int vertices; //creates a linked list for the adjacency list of the graph private LinkedList adjlist[]; //creating a constructor of the Graph class Graph(int count_v) { //assigning the number of vertices to the passed parameter vertices = count_v; adjlist = new LinkedList[count_v]; //loop for creating the adjacency lists for (int i=0; i<count_v; 10 ++i) adjlist[i]="new" linkedlist(); } method that adds a new edge to the graph void addnewedge(int v, int w) { adjlist[v].add(w); traversal starts from root node traversalbfs(int rnode) creates an array of boolean type for visited initially all nodes are unvisited visitednode[]="new" boolean[vertices]; creating another list storing linkedlist vnodelist="new" if current (root node) is visited, add it visitednode[rnode]="true;" inserts into vnodelist.add(rnode); while loop executes until we have (vnodelist.size() !="0)" deque entry queue and process poll() retrieves removes head (first element) this rnode="vnodelist.poll();" system.out.print(rnode+' '); detrmines negihboring iterates over iterator i="adjlist[rnode].listIterator();" (i.hasnext()) returns next element in iteration store variable n checks or not (!visitednode[n]) above if-statement true, visits visitednode[n]="true;" vnodelist.add(n); implementing driver code public class breadthfirstsearch static main(string args[]) having vertices graph(10); edges graph.addnewedge(2, 5); graph.addnewedge(3, graph.addnewedge(1, 2); 4); graph.addnewedge(4, 1); graph.addnewedge(6, graph.addnewedge(5, 6); 3); graph.addnewedge(7, 7); print sequence which bfs execute system.out.println('breadth-first is: graph.traversalbfs(2); < pre> <p> <strong>Output:</strong> </p> <img src="//techcodeview.com/img/java-tutorial/19/java-graph-16.webp" alt="Java Graph"> <hr></count_v;></pre></count_v;></pre></=></list></pre></=></list>