logo

Suma de números pares de Fibonacci

Pruébalo en GfG Practice ' title= #practiceLinkDiv { mostrar: ninguno !importante; }

Dado un límite, encuentre la suma de todos los términos pares en la secuencia de Fibonacci debajo del límite dado.
Los primeros términos de Números de Fibonacci son 1 1 2 3 5 8 13 21 34 55 89 144 233... (Los números pares están resaltados).
Ejemplos:  
 

Input : limit = 8 Output : 10 Explanation : 2 + 8 = 10 Input : limit = 400; Output : 188. Explanation : 2 + 8 + 34 + 144 = 188.


 

Práctica recomendada Suma de números pares de Fibonacci ¡Pruébalo!


Una solución simple es recorrer todos los números de Fibonacci mientras el siguiente número es menor o igual al límite dado. Para cada número comprueba si es par. Si el número es par, súmalo al resultado.
Una solución eficiente se basa en lo siguiente fórmula recursiva para números pares de Fibonacci
 



Recurrence for Even Fibonacci sequence is: EFn = 4EFn-1 + EFn-2 with seed values EF0 = 0 and EF1 = 2.   EFn   represents n'th term in Even Fibonacci sequence.


Referirse este más detalles de la fórmula anterior.
Entonces, al iterar sobre los números de Fibonacci, solo generamos números pares de Fibonacci. 
 

C++
// Find the sum of all the even-valued terms in // the Fibonacci sequence which do not exceed // given limit. #include   using namespace std; // Returns sum of even Fibonacci numbers which are // less than or equal to given limit. int evenFibSum(int limit) {  if (limit < 2)  return 0;  // Initialize first two even Fibonacci numbers  // and their sum  long long int ef1 = 0 ef2 = 2;  long long int sum = ef1 + ef2;  // calculating sum of even Fibonacci value  while (ef2 <= limit)  {  // get next even value of Fibonacci sequence  long long int ef3 = 4*ef2 + ef1;  // If we go beyond limit we break loop  if (ef3 > limit)  break;  // Move to next even number and update sum  ef1 = ef2;  ef2 = ef3;  sum += ef2;  }  return sum; } // Driver code int main() {  int limit = 400;  cout << evenFibSum(limit);  return 0; } 
Java
// Find the sum of all the even-valued terms in // the Fibonacci sequence which do not exceed // given limit. import java.io.*; class GFG  {  // Returns sum of even Fibonacci numbers which are  // less than or equal to given limit.  static int evenFibSum(int limit)  {  if (limit < 2)  return 0;    // Initialize first two even Fibonacci numbers  // and their sum  long ef1 = 0 ef2 = 2;  long sum = ef1 + ef2;    // calculating sum of even Fibonacci value  while (ef2 <= limit)  {  // get next even value of Fibonacci sequence  long ef3 = 4 * ef2 + ef1;    // If we go beyond limit we break loop  if (ef3 > limit)  break;    // Move to next even number and update sum  ef1 = ef2;  ef2 = ef3;  sum += ef2;  }    return(int) sum;  }    // Driver code  public static void main (String[] args)   {  int limit = 400;  System.out.println(evenFibSum(limit));    } } // This code is contributed by vt_m. 
Python3
# Find the sum of all the even-valued  # terms in the Fibonacci sequence which  # do not exceed given limit. # Returns sum of even Fibonacci numbers which # are less than or equal to given limit. def evenFibSum(limit) : if (limit < 2) : return 0 # Initialize first two even Fibonacci numbers # and their sum ef1 = 0 ef2 = 2 sm= ef1 + ef2 # calculating sum of even Fibonacci value while (ef2 <= limit) : # get next even value of Fibonacci  # sequence ef3 = 4 * ef2 + ef1 # If we go beyond limit we break loop if (ef3 > limit) : break # Move to next even number and update # sum ef1 = ef2 ef2 = ef3 sm = sm + ef2 return sm # Driver code limit = 400 print(evenFibSum(limit)) # This code is contributed by Nikita Tiwari. 
C#
// C# program to Find the sum of all // the even-valued terms in the  // Fibonacci sequence which do not // exceed given limit.given limit. using System; class GFG {    // Returns sum of even Fibonacci   // numbers which are less than or  // equal to given limit.  static int evenFibSum(int limit)  {  if (limit < 2)  return 0;    // Initialize first two even  // Fibonacci numbers and their sum  long ef1 = 0 ef2 = 2;  long sum = ef1 + ef2;    // calculating sum of even   // Fibonacci value  while (ef2 <= limit)  {    // get next even value of   // Fibonacci sequence  long ef3 = 4 * ef2 + ef1;    // If we go beyond limit  // we break loop  if (ef3 > limit)  break;    // Move to next even number  // and update sum  ef1 = ef2;  ef2 = ef3;  sum += ef2;  }    return(int) sum;  }    // Driver code  public static void Main ()   {  int limit = 400;  Console.Write(evenFibSum(limit));    } } // This code is contributed by Nitin Mittal. 
PHP
 // Find the sum of all the  // even-valued terms in the  // Fibonacci sequence which  // do not exceed given limit. // Returns sum of even Fibonacci // numbers which are less than or  // equal to given limit. function evenFibSum($limit) { if ($limit < 2) return 0; // Initialize first two even  // Fibonacci numbers and their sum $ef1 = 0; $ef2 = 2; $sum = $ef1 + $ef2; // calculating sum of // even Fibonacci value while ($ef2 <= $limit) { // get next even value of // Fibonacci sequence $ef3 = 4 * $ef2 + $ef1; // If we go beyond limit // we break loop if ($ef3 > $limit) break; // Move to next even number // and update sum $ef1 = $ef2; $ef2 = $ef3; $sum += $ef2; } return $sum; } // Driver code $limit = 400; echo(evenFibSum($limit)); // This code is contributed by Ajit. ?> 
JavaScript
<script> // Javascript program to find the sum of all the even-valued terms in // the Fibonacci sequence which do not exceed // given limit.  // Returns sum of even Fibonacci numbers which are  // less than or equal to given limit.  function evenFibSum(limit)  {  if (limit < 2)  return 0;    // Initialize first two even Fibonacci numbers  // and their sum  let ef1 = 0 ef2 = 2;  let sum = ef1 + ef2;    // calculating sum of even Fibonacci value  while (ef2 <= limit)  {  // get next even value of Fibonacci sequence  let ef3 = 4 * ef2 + ef1;    // If we go beyond limit we break loop  if (ef3 > limit)  break;    // Move to next even number and update sum  ef1 = ef2;  ef2 = ef3;  sum += ef2;  }    return sum;  }   // Function call    let limit = 400;  document.write(evenFibSum(limit));   </script> 

Producción :  
 

188

Complejidad del tiempo: En)

Espacio Auxiliar: O(1)

anaconda vs serpiente pitón