logo

Divisores comunes de dos números

Dados dos números enteros, ¿la tarea es encontrar el recuento de todos los divisores comunes de números dados?

Ejemplos:  

Input : a = 12 b = 24 Output: 6 // all common divisors are 1 2 3 // 4 6 and 12 Input : a = 3 b = 17 Output: 1 // all common divisors are 1 Input : a = 20 b = 36 Output: 3 // all common divisors are 1 2 4
Recommended Practice Divisores comunes ¡Pruébalo!

Se recomienda consultar todos los divisores de un número dado como requisito previo de este artículo. 



Solución ingenua  
Una solución simple es encontrar primero todos los divisores del primer número y almacenarlos en una matriz o hash. Luego encuentra los divisores comunes del segundo número y guárdalos. Finalmente imprima elementos comunes de dos matrices almacenadas o hash. La clave es que la magnitud de las potencias de los factores primos de un divisor debe ser igual a la potencia mínima de dos factores primos de a y b.

  • Encuentra los factores primos de a usando factorización prima .
  • Encuentre el recuento de cada factor primo de a y guárdelo en un Hashmap.
  • factorizar primos b utilizando distintos factores primos de a .
  • Entonces el número total de divisores sería igual al producto de (cuenta + 1) 
    de cada factor.
  • contares el mínimo de recuentos de cada factor primo de a y b.
  • Esto da el recuento de todos los divisores de a y b .
C++
// C++ implementation of program  #include    using namespace std; // Map to store the count of each // prime factor of a  map<int int> ma; // Function that calculate the count of  // each prime factor of a number  void primeFactorize(int a)  {   for(int i = 2; i * i <= a; i += 2)   {   int cnt = 0;   while (a % i == 0)   {   cnt++;   a /= i;   }   ma[i] = cnt;   }   if (a > 1)  {  ma[a] = 1;  } }  // Function to calculate all common // divisors of two given numbers  // a b --> input integer numbers  int commDiv(int a int b)  {     // Find count of each prime factor of a   primeFactorize(a);   // stores number of common divisors   int res = 1;   // Find the count of prime factors   // of b using distinct prime factors of a   for(auto m = ma.begin();  m != ma.end(); m++)  {  int cnt = 0;   int key = m->first;   int value = m->second;   while (b % key == 0)   {   b /= key;   cnt++;   }   // Prime factor of common divisor   // has minimum cnt of both a and b   res *= (min(cnt value) + 1);   }   return res;  }  // Driver code  int main() {  int a = 12 b = 24;     cout << commDiv(a b) << endl;     return 0; } // This code is contributed by divyeshrabadiya07 
Java
// Java implementation of program import java.util.*; import java.io.*; class GFG {  // map to store the count of each prime factor of a  static HashMap<Integer Integer> ma = new HashMap<>();  // method that calculate the count of  // each prime factor of a number  static void primeFactorize(int a)  {  for (int i = 2; i * i <= a; i += 2) {  int cnt = 0;  while (a % i == 0) {  cnt++;  a /= i;  }  ma.put(i cnt);  }  if (a > 1)  ma.put(a 1);  }  // method to calculate all common divisors  // of two given numbers  // a b --> input integer numbers  static int commDiv(int a int b)  {  // Find count of each prime factor of a  primeFactorize(a);  // stores number of common divisors  int res = 1;  // Find the count of prime factors of b using  // distinct prime factors of a  for (Map.Entry<Integer Integer> m : ma.entrySet()) {  int cnt = 0;  int key = m.getKey();  int value = m.getValue();  while (b % key == 0) {  b /= key;  cnt++;  }  // prime factor of common divisor  // has minimum cnt of both a and b  res *= (Math.min(cnt value) + 1);  }  return res;  }  // Driver method  public static void main(String args[])  {  int a = 12 b = 24;  System.out.println(commDiv(a b));  } } 
Python3
# Python3 implementation of program  import math # Map to store the count of each # prime factor of a  ma = {} # Function that calculate the count of  # each prime factor of a number  def primeFactorize(a): sqt = int(math.sqrt(a)) for i in range(2 sqt 2): cnt = 0 while (a % i == 0): cnt += 1 a /= i ma[i] = cnt if (a > 1): ma[a] = 1 # Function to calculate all common # divisors of two given numbers  # a b --> input integer numbers  def commDiv(a b): # Find count of each prime factor of a  primeFactorize(a) # stores number of common divisors  res = 1 # Find the count of prime factors  # of b using distinct prime factors of a  for key value in ma.items(): cnt = 0 while (b % key == 0): b /= key cnt += 1 # Prime factor of common divisor  # has minimum cnt of both a and b  res *= (min(cnt value) + 1) return res # Driver code  a = 12 b = 24 print(commDiv(a b)) # This code is contributed by Stream_Cipher 
C#
// C# implementation of program using System; using System.Collections.Generic;  class GFG{   // Map to store the count of each  // prime factor of a static Dictionary<int  int> ma = new Dictionary<int  int>(); // Function that calculate the count of // each prime factor of a number static void primeFactorize(int a) {  for(int i = 2; i * i <= a; i += 2)  {  int cnt = 0;  while (a % i == 0)  {  cnt++;  a /= i;  }  ma.Add(i cnt);  }    if (a > 1)  ma.Add(a 1); } // Function to calculate all common  // divisors of two given numbers // a b --> input integer numbers static int commDiv(int a int b) {    // Find count of each prime factor of a  primeFactorize(a);    // Stores number of common divisors  int res = 1;    // Find the count of prime factors  // of b using distinct prime factors of a  foreach(KeyValuePair<int int> m in ma)  {  int cnt = 0;  int key = m.Key;  int value = m.Value;    while (b % key == 0)  {  b /= key;  cnt++;  }  // Prime factor of common divisor  // has minimum cnt of both a and b  res *= (Math.Min(cnt value) + 1);  }  return res; } // Driver code  static void Main() {  int a = 12 b = 24;    Console.WriteLine(commDiv(a b)); } } // This code is contributed by divyesh072019 
JavaScript
<script>   // JavaScript implementation of program  // Map to store the count of each  // prime factor of a  let ma = new Map();  // Function that calculate the count of  // each prime factor of a number  function primeFactorize(a)  {  for(let i = 2; i * i <= a; i += 2)  {  let cnt = 0;  while (a % i == 0)  {  cnt++;  a = parseInt(a / i 10);  }  ma.set(i cnt);  }  if (a > 1)  {  ma.set(a 1);  }  }  // Function to calculate all common  // divisors of two given numbers  // a b --> input integer numbers  function commDiv(ab)  {  // Find count of each prime factor of a  primeFactorize(a);  // stores number of common divisors  let res = 1;  // Find the count of prime factors  // of b using distinct prime factors of a  ma.forEach((valueskeys)=>{  let cnt = 0;  let key = keys;  let value = values;  while (b % key == 0)  {  b = parseInt(b / key 10);  cnt++;  }  // Prime factor of common divisor  // has minimum cnt of both a and b  res *= (Math.min(cnt value) + 1);  })  return res;  }  // Driver code  let a = 12 b = 24;    document.write(commDiv(a b));   </script> 

Producción:  

6

Complejidad del tiempo : O (? norte iniciar sesión norte) 
Espacio Auxiliar: En)


Solución eficiente - 
Una mejor solución es calcular el máximo común divisor (mcd) de dos números dados y luego contar los divisores de ese mcd. 

C++
// C++ implementation of program #include    using namespace std; // Function to calculate gcd of two numbers int gcd(int a int b) {  if (a == 0)  return b;  return gcd(b % a a); } // Function to calculate all common divisors // of two given numbers // a b --> input integer numbers int commDiv(int a int b) {  // find gcd of a b  int n = gcd(a b);  // Count divisors of n.  int result = 0;  for (int i = 1; i <= sqrt(n); i++) {  // if 'i' is factor of n  if (n % i == 0) {  // check if divisors are equal  if (n / i == i)  result += 1;  else  result += 2;  }  }  return result; } // Driver program to run the case int main() {  int a = 12 b = 24;  cout << commDiv(a b);  return 0; } 
Java
// Java implementation of program class Test {  // method to calculate gcd of two numbers  static int gcd(int a int b)  {  if (a == 0)  return b;  return gcd(b % a a);  }  // method to calculate all common divisors  // of two given numbers  // a b --> input integer numbers  static int commDiv(int a int b)  {  // find gcd of a b  int n = gcd(a b);  // Count divisors of n.  int result = 0;  for (int i = 1; i <= Math.sqrt(n); i++) {  // if 'i' is factor of n  if (n % i == 0) {  // check if divisors are equal  if (n / i == i)  result += 1;  else  result += 2;  }  }  return result;  }  // Driver method  public static void main(String args[])  {  int a = 12 b = 24;  System.out.println(commDiv(a b));  } } 
Python3
# Python implementation of program from math import sqrt # Function to calculate gcd of two numbers def gcd(a b): if a == 0: return b return gcd(b % a a) # Function to calculate all common divisors  # of two given numbers  # a b --> input integer numbers  def commDiv(a b): # find GCD of a b n = gcd(a b) # Count divisors of n result = 0 for i in range(1int(sqrt(n))+1): # if i is a factor of n if n % i == 0: # check if divisors are equal if n/i == i: result += 1 else: result += 2 return result # Driver program to run the case  if __name__ == '__main__': a = 12 b = 24; print(commDiv(a b)) 
C#
// C# implementation of program using System; class GFG {  // method to calculate gcd  // of two numbers  static int gcd(int a int b)  {  if (a == 0)  return b;  return gcd(b % a a);  }  // method to calculate all  // common divisors of two  // given numbers a b -->  // input integer numbers  static int commDiv(int a int b)  {  // find gcd of a b  int n = gcd(a b);  // Count divisors of n.  int result = 0;  for (int i = 1; i <= Math.Sqrt(n); i++) {  // if 'i' is factor of n  if (n % i == 0) {  // check if divisors are equal  if (n / i == i)  result += 1;  else  result += 2;  }  }  return result;  }  // Driver method  public static void Main(String[] args)  {  int a = 12 b = 24;  Console.Write(commDiv(a b));  } } // This code contributed by parashar. 
PHP
 // PHP implementation of program // Function to calculate  // gcd of two numbers function gcd($a $b) { if ($a == 0) return $b; return gcd($b % $a $a); } // Function to calculate all common  // divisors of two given numbers // a b --> input integer numbers function commDiv($a $b) { // find gcd of a b $n = gcd($a $b); // Count divisors of n. $result = 0; for ($i = 1; $i <= sqrt($n); $i++) { // if 'i' is factor of n if ($n % $i == 0) { // check if divisors  // are equal if ($n / $i == $i) $result += 1; else $result += 2; } } return $result; } // Driver Code $a = 12; $b = 24; echo(commDiv($a $b)); // This code is contributed by Ajit. ?> 
JavaScript
<script>  // Javascript implementation of program    // Function to calculate gcd of two numbers  function gcd(a b)  {  if (a == 0)  return b;  return gcd(b % a a);  }  // Function to calculate all common divisors  // of two given numbers  // a b --> input integer numbers  function commDiv(a b)  {  // find gcd of a b  let n = gcd(a b);  // Count divisors of n.  let result = 0;  for (let i = 1; i <= Math.sqrt(n); i++) {  // if 'i' is factor of n  if (n % i == 0) {  // check if divisors are equal  if (n / i == i)  result += 1;  else  result += 2;  }  }  return result;  }  let a = 12 b = 24;  document.write(commDiv(a b));   </script> 

Producción :   

6

Complejidad del tiempo: En1/2) donde n es el mcd de dos números.
Espacio Auxiliar: O(1)

Otro enfoque:

1. Defina una función 'mcd' que tome dos números enteros 'a' y 'b' y devuelva su máximo común divisor (MCD) utilizando el algoritmo euclidiano.
2. Defina una función 'count_common_divisors' que tome dos números enteros 'a' y 'b' y cuente el número de divisores comunes de 'a' y 'b' usando su MCD.
3. Calcule el MCD de 'a' y 'b' usando la función 'mcd'.
4. Inicialice un contador 'cuenta' a 0.
5. Recorra todos los divisores posibles del MCD de 'a' y 'b' desde 1 hasta la raíz cuadrada del MCD.
6. Si el divisor actual divide el MCD uniformemente, incremente el contador en 2 (porque tanto 'a' como 'b' son divisibles por el divisor).
7. Si el cuadrado del divisor actual es igual al MCD, disminuya el contador en 1 (porque ya hemos contado este divisor una vez).
8. Devuelve el recuento final de divisores comunes.
9. En la función principal defina dos números enteros 'a' y 'b' y llame a la función 'count_common_divisors' con estos números enteros.
10. Imprima el número de divisores comunes de 'a' y 'b' usando la función printf.

C
#include  int gcd(int a int b) {  if(b == 0) {  return a;  }  return gcd(b a % b); } int count_common_divisors(int a int b) {  int gcd_ab = gcd(a b);  int count = 0;  for(int i = 1; i * i <= gcd_ab; i++) {  if(gcd_ab % i == 0) {  count += 2;  if(i * i == gcd_ab) {  count--;  }  }  }  return count; } int main() {  int a = 12;  int b = 18;  int common_divisors = count_common_divisors(a b);  printf('The number of common divisors of %d and %d is %d.n' a b common_divisors);  return 0; } 
C++
#include    using namespace std; int gcd(int a int b) {  if(b == 0) {  return a;  }  return gcd(b a % b); } int count_common_divisors(int a int b) {  int gcd_ab = gcd(a b);  int count = 0;  for(int i = 1; i * i <= gcd_ab; i++) {  if(gcd_ab % i == 0) {  count += 2;  if(i * i == gcd_ab) {  count--;  }  }  }  return count; } int main() {  int a = 12;  int b = 18;  int common_divisors = count_common_divisors(a b);  cout<<'The number of common divisors of '<<a<<' and '<<b<<' is '<<common_divisors<<'.'<<endl;  return 0; } 
Java
import java.util.*; public class Main {  public static int gcd(int a int b) {  if(b == 0) {  return a;  }  return gcd(b a % b);  }  public static int countCommonDivisors(int a int b) {  int gcd_ab = gcd(a b);  int count = 0;  for(int i = 1; i * i <= gcd_ab; i++) {  if(gcd_ab % i == 0) {  count += 2;  if(i * i == gcd_ab) {  count--;  }  }  }  return count;  }  public static void main(String[] args) {  int a = 12;  int b = 18;  int commonDivisors = countCommonDivisors(a b);  System.out.println('The number of common divisors of ' + a + ' and ' + b + ' is ' + commonDivisors + '.');  } } 
Python3
import math def gcd(a b): if b == 0: return a return gcd(b a % b) def count_common_divisors(a b): gcd_ab = gcd(a b) count = 0 for i in range(1 int(math.sqrt(gcd_ab)) + 1): if gcd_ab % i == 0: count += 2 if i * i == gcd_ab: count -= 1 return count a = 12 b = 18 common_divisors = count_common_divisors(a b) print('The number of common divisors of' a 'and' b 'is' common_divisors '.') # This code is contributed by Prajwal Kandekar 
C#
using System; public class MainClass {  public static int GCD(int a int b)  {  if (b == 0)  {  return a;  }  return GCD(b a % b);  }  public static int CountCommonDivisors(int a int b)  {  int gcd_ab = GCD(a b);  int count = 0;  for (int i = 1; i * i <= gcd_ab; i++)  {  if (gcd_ab % i == 0)  {  count += 2;  if (i * i == gcd_ab)  {  count--;  }  }  }  return count;  }  public static void Main()  {  int a = 12;  int b = 18;  int commonDivisors = CountCommonDivisors(a b);  Console.WriteLine('The number of common divisors of {0} and {1} is {2}.' a b commonDivisors);  } } 
JavaScript
// Function to calculate the greatest common divisor of  // two integers a and b using the Euclidean algorithm function gcd(a b) {  if(b === 0) {  return a;  }  return gcd(b a % b); } // Function to count the number of common divisors of two integers a and b function count_common_divisors(a b) {  let gcd_ab = gcd(a b);  let count = 0;  for(let i = 1; i * i <= gcd_ab; i++) {  if(gcd_ab % i === 0) {  count += 2;  if(i * i === gcd_ab) {  count--;  }  }  }  return count; } let a = 12; let b = 18; let common_divisors = count_common_divisors(a b); console.log(`The number of common divisors of ${a} and ${b} is ${common_divisors}.`); 

Producción
The number of common divisors of 12 and 18 is 4.

La complejidad temporal de la función gcd() es O(log(min(a b))) ya que utiliza el algoritmo de Euclides que toma un tiempo logarítmico con respecto al menor de los dos números.

La complejidad temporal de la función count_common_divisors() es O(sqrt(gcd(a b))) ya que itera hasta la raíz cuadrada del mcd de los dos números.

La complejidad espacial de ambas funciones es O(1) ya que sólo utilizan una cantidad constante de memoria independientemente del tamaño de entrada.