logo

Plantillas C++

Una plantilla de C++ es una característica poderosa agregada a C++. Le permite definir las clases genéricas y funciones genéricas y, por tanto, proporciona soporte para la programación genérica. La programación genérica es una técnica en la que se utilizan tipos genéricos como parámetros en algoritmos para que puedan funcionar con una variedad de tipos de datos.

Las plantillas se pueden representar de dos maneras:

  • Plantillas de funciones
  • Plantillas de clase
Plantillas C++

Plantillas de funciones:

Podemos definir una plantilla para una función. Por ejemplo, si tenemos una función add(), podemos crear versiones de la función add para agregar valores de tipo int, float o double.

Plantilla de clase:

Podemos definir una plantilla para una clase. Por ejemplo, se puede crear una plantilla de clase para la clase de matriz que pueda aceptar matrices de varios tipos, como matriz int, matriz flotante o matriz doble.

que es experto

Plantilla de función

  • Las funciones genéricas utilizan el concepto de plantilla de función. Las funciones genéricas definen un conjunto de operaciones que se pueden aplicar a los distintos tipos de datos.
  • El tipo de datos sobre los que operará la función depende del tipo de datos pasados ​​como parámetro.
  • Por ejemplo, el algoritmo de clasificación rápida se implementa mediante una función genérica y se puede implementar en una matriz de números enteros o una matriz de flotantes.
  • Una función genérica se crea utilizando la plantilla de palabras clave. La plantilla define qué función hará.

Sintaxis de la plantilla de función

 template ret_type func_name(parameter_list) { // body of function. } 

Dónde tipo T : Es un nombre de marcador de posición para un tipo de datos utilizado por la función. Se utiliza dentro de la definición de función. Es solo un marcador de posición que el compilador reemplazará automáticamente con el tipo de datos real.

clase : Se utiliza una palabra clave de clase para especificar un tipo genérico en una declaración de plantilla.

Veamos un ejemplo sencillo de una plantilla de función:

 #include using namespace std; template T add(T &amp;a,T &amp;b) { T result = a+b; return result; } int main() { int i =2; int j =3; float m = 2.3; float n = 1.2; cout&lt;<'addition of i and j is :'< <add(i,j); cout<<'
'; cout<<'addition m n <add(m,n); return 0; } < pre> <p> <strong>Output:</strong> </p> <pre> Addition of i and j is :5 Addition of m and n is :3.5 </pre> <p>In the above example, we create the function template which can perform the addition operation on any type either it can be integer, float or double.</p> <h3>Function Templates with Multiple Parameters</h3> <p>We can use more than one generic type in the template function by using the comma to separate the list.</p> <h2>Syntax</h2> <pre> template return_type function_name (arguments of type T1, T2....) { // body of function. } </pre> <p>In the above syntax, we have seen that the template function can accept any number of arguments of a different type.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template void fun(X a,Y b) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; std::cout << 'value of b is : ' < <b<< } int main() { fun(15,12.3); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 15 Value of b is : 12.3 </pre> <p>In the above example, we use two generic types in the template function, i.e., X and Y.</p> <h3>Overloading a Function Template</h3> <p>We can overload the generic function means that the overloaded template functions can differ in the parameter list.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; template void fun(X a) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; } template void fun(x b ,y c) { std::cout << 'value of is : ' < <b<< c <<c<< int main() fun(10); fun(20,30.5); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 10 Value of b is : 20 Value of c is : 30.5 </pre> <p>In the above example, template of fun() function is overloaded.</p> <h3>Restrictions of Generic Functions</h3> <p>Generic functions perform the same operation for all the versions of a function except the data type differs. Let&apos;s see a simple example of an overloaded function which cannot be replaced by the generic function as both the functions have different functionalities.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; void fun(double a) { cout&lt;<'value of a is : '< <a<<'
'; } void fun(int b) { if(b%2="=0)" cout<<'number even'; else odd'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<' ,'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] ' '; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></'></pre></std::endl;></pre></'value></pre></a<<></pre></a<<></pre></'addition>

En el ejemplo anterior, creamos la plantilla de función que puede realizar la operación de suma en cualquier tipo, ya sea entero, flotante o doble.

Plantillas de funciones con múltiples parámetros

Podemos usar más de un tipo genérico en la función de plantilla usando la coma para separar la lista.

Sintaxis

 template return_type function_name (arguments of type T1, T2....) { // body of function. } 

En la sintaxis anterior, hemos visto que la función de plantilla puede aceptar cualquier cantidad de argumentos de un tipo diferente.

Veamos un ejemplo sencillo:

 #include using namespace std; template void fun(X a,Y b) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; std::cout << \'value of b is : \' < <b<< } int main() { fun(15,12.3); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 15 Value of b is : 12.3 </pre> <p>In the above example, we use two generic types in the template function, i.e., X and Y.</p> <h3>Overloading a Function Template</h3> <p>We can overload the generic function means that the overloaded template functions can differ in the parameter list.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; template void fun(X a) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; } template void fun(x b ,y c) { std::cout << \'value of is : \' < <b<< c <<c<< int main() fun(10); fun(20,30.5); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 10 Value of b is : 20 Value of c is : 30.5 </pre> <p>In the above example, template of fun() function is overloaded.</p> <h3>Restrictions of Generic Functions</h3> <p>Generic functions perform the same operation for all the versions of a function except the data type differs. Let&apos;s see a simple example of an overloaded function which cannot be replaced by the generic function as both the functions have different functionalities.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; void fun(double a) { cout&lt;<\'value of a is : \'< <a<<\'
\'; } void fun(int b) { if(b%2="=0)" cout<<\'number even\'; else odd\'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;></pre></\'value></pre></a<<></pre></a<<>

En el ejemplo anterior, utilizamos dos tipos genéricos en la función de plantilla, es decir, X e Y.

Sobrecarga de una plantilla de función

Podemos sobrecargar la función genérica, lo que significa que las funciones de plantilla sobrecargadas pueden diferir en la lista de parámetros.

Entendamos esto a través de un ejemplo simple:

 #include using namespace std; template void fun(X a) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; } template void fun(x b ,y c) { std::cout << \'value of is : \' < <b<< c <<c<< int main() fun(10); fun(20,30.5); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 10 Value of b is : 20 Value of c is : 30.5 </pre> <p>In the above example, template of fun() function is overloaded.</p> <h3>Restrictions of Generic Functions</h3> <p>Generic functions perform the same operation for all the versions of a function except the data type differs. Let&apos;s see a simple example of an overloaded function which cannot be replaced by the generic function as both the functions have different functionalities.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; void fun(double a) { cout&lt;<\'value of a is : \'< <a<<\'
\'; } void fun(int b) { if(b%2="=0)" cout<<\'number even\'; else odd\'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;></pre></\'value></pre></a<<>

En el ejemplo anterior, la plantilla de la función fun() está sobrecargada.

Restricciones de funciones genéricas

Las funciones genéricas realizan la misma operación para todas las versiones de una función, excepto que el tipo de datos difiere. Veamos un ejemplo simple de una función sobrecargada que no puede ser reemplazada por la función genérica ya que ambas funciones tienen funcionalidades diferentes.

Entendamos esto a través de un ejemplo simple:

 #include using namespace std; void fun(double a) { cout&lt;<\'value of a is : \'< <a<<\'
\'; } void fun(int b) { if(b%2="=0)" cout<<\'number even\'; else odd\'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;></pre></\'value>

En el ejemplo anterior, sobrecargamos las funciones ordinarias. No podemos sobrecargar las funciones genéricas ya que ambas funciones tienen funcionalidades diferentes. El primero muestra el valor y el segundo determina si el número es par o no.


PLANTILLA DE CLASE

Plantilla de clase También se puede definir de forma similar a la plantilla de función. Cuando una clase utiliza el concepto de Plantilla, la clase se conoce como clase genérica.

Sintaxis

 template class class_name { . . } 

tipo T es un nombre de marcador de posición que se determinará cuando se cree una instancia de la clase. Podemos definir más de un tipo de datos genérico usando una lista separada por comas. El tipo T se puede utilizar dentro del cuerpo de la clase.

Ahora, creamos una instancia de una clase.

 class_name ob; 

donde nombre_clase : Es el nombre de la clase.

punteros en c

tipo : Es el tipo de datos con los que opera la clase.

en : Es el nombre del objeto.

Veamos un ejemplo sencillo:

 #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;>

En el ejemplo anterior, creamos una plantilla para la clase A. Dentro del método main(), creamos la instancia de la clase A denominada 'd'.

10 de 100.00

PLANTILLA DE CLASE CON MÚLTIPLES PARÁMETROS

Podemos usar más de un tipo de datos genérico en una plantilla de clase, y cada tipo de datos genérico está separado por una coma.

Sintaxis

 template class class_name { // Body of the class. } 

Veamos un ejemplo sencillo cuando la plantilla de clase contiene dos tipos de datos genéricos.

 #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\\' ,\\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \\' \\'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\\'>

Argumentos de plantilla sin tipo

La plantilla puede contener múltiples argumentos y también podemos usar argumentos que no sean de tipo. Además del argumento de tipo T, también podemos usar otros tipos de argumentos como cadenas, nombres de funciones, expresiones constantes y tipos integrados. Veamos el siguiente ejemplo:

 template class array { T arr[size]; // automatic array initialization. }; 

En el caso anterior, el argumento de la plantilla que no es de tipo es el tamaño y, por lo tanto, la plantilla proporciona el tamaño de la matriz como argumento.

Los argumentos se especifican cuando se crean los objetos de una clase:

 array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. 

Veamos un ejemplo sencillo de argumentos de plantilla sin tipo.

 #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \\' \\'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)>

En el ejemplo anterior, se crea la plantilla de clase que contiene el argumento de plantilla sin tipo, es decir, tamaño. Se especifica cuando se crea el objeto de clase 'A'.

Puntos para recordar

  • C++ admite una potente característica conocida como plantilla para implementar el concepto de programación genérica.
  • Una plantilla nos permite crear una familia de clases o familia de funciones para manejar diferentes tipos de datos.
  • Las clases y funciones de plantilla eliminan la duplicación de código de diferentes tipos de datos y, por lo tanto, hacen que el desarrollo sea más fácil y rápido.
  • Se pueden utilizar varios parámetros tanto en la clase como en la plantilla de función.
  • Las funciones de plantilla también pueden estar sobrecargadas.
  • También podemos utilizar argumentos que no sean de tipo, como tipos de datos integrados o derivados, como argumentos de plantilla.