#practiceLinkDiv { mostrar: ninguno !importante; }Dada una matriz arr[] de N elementos enteros, la tarea es encontrar la suma del promedio de todos los subconjuntos de esta matriz.
código de muestra c#
Ejemplo:
Input : arr[] = [2 3 5]Recommended Practice Suma del promedio de todos los subconjuntos ¡Pruébalo!
Output : 23.33
Explanation : Subsets with their average are
[2] average = 2/1 = 2
[3] average = 3/1 = 3
[5] average = 5/1 = 5
[2 3] average = (2+3)/2 = 2.5
[2 5] average = (2+5)/2 = 3.5
[3 5] average = (3+5)/2 = 4
[2 3 5] average = (2+3+5)/3 = 3.33
Sum of average of all subset is
2 + 3 + 5 + 2.5 + 3.5 + 4 + 3.33 = 23.33
Enfoque ingenuo: Una solución ingenua es iterar a través de todos los subconjuntos posibles para obtener un promedio de todos ellos y luego agregarlos uno por uno, pero esto llevará un tiempo exponencial y no será factible para matrices más grandes.
Podemos obtener un patrón tomando un ejemplo.
arr = [a0 a1 a2 a3]
sum of average =
a0/1 + a1/1 + a2/2 + a3/1 +
(a0+a1)/2 + (a0+a2)/2 + (a0+a3)/2 + (a1+a2)/2 +
(a1+a3)/2 + (a2+a3)/2 +
(a0+a1+a2)/3 + (a0+a2+a3)/3 + (a0+a1+a3)/3 +
(a1+a2+a3)/3 +
(a0+a1+a2+a3)/4
If S = (a0+a1+a2+a3) then above expression
can be rearranged as below
sum of average = (S)/1 + (3*S)/2 + (3*S)/3 + (S)/4
El coeficiente con numeradores se puede explicar de la siguiente manera, supongamos que estamos iterando sobre subconjuntos con K elementos, entonces el denominador será K y el numerador será r*S donde 'r' denota el número de veces que se agregará un elemento de matriz particular mientras se itera sobre subconjuntos del mismo tamaño. Por inspección, podemos ver que r será nCr(N - 1 n - 1) porque después de colocar un elemento en la suma debemos elegir (n - 1) elementos de (N - 1) elementos para que cada elemento tenga una frecuencia de nCr (N - 1 n - 1) mientras consideramos subconjuntos del mismo tamaño, ya que todos los elementos participan en la suma el mismo número de veces, esto también será la frecuencia de S y será el numerador en la expresión final.
En el siguiente código nCr se implementa mediante un método de programación dinámica puedes leer más sobre eso aquí
C++// C++ program to get sum of average of all subsets #include using namespace std; // Returns value of Binomial Coefficient C(n k) int nCr(int n int k) { int C[n + 1][k + 1]; int i j; // Calculate value of Binomial Coefficient in bottom // up manner for (i = 0; i <= n; i++) { for (j = 0; j <= min(i k); j++) { // Base Cases if (j == 0 || j == i) C[i][j] = 1; // Calculate value using previously stored // values else C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; } } return C[n][k]; } // method returns sum of average of all subsets double resultOfAllSubsets(int arr[] int N) { double result = 0.0; // Initialize result // Find sum of elements int sum = 0; for (int i = 0; i < N; i++) sum += arr[i]; // looping once for all subset of same size for (int n = 1; n <= N; n++) /* each element occurs nCr(N-1 n-1) times while considering subset of size n */ result += (double)(sum * (nCr(N - 1 n - 1))) / n; return result; } // Driver code to test above methods int main() { int arr[] = { 2 3 5 7 }; int N = sizeof(arr) / sizeof(int); cout << resultOfAllSubsets(arr N) << endl; return 0; }
Java // java program to get sum of // average of all subsets import java.io.*; class GFG { // Returns value of Binomial // Coefficient C(n k) static int nCr(int n int k) { int C[][] = new int[n + 1][k + 1]; int i j; // Calculate value of Binomial // Coefficient in bottom up manner for (i = 0; i <= n; i++) { for (j = 0; j <= Math.min(i k); j++) { // Base Cases if (j == 0 || j == i) C[i][j] = 1; // Calculate value using // previously stored values else C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; } } return C[n][k]; } // method returns sum of average of all subsets static double resultOfAllSubsets(int arr[] int N) { // Initialize result double result = 0.0; // Find sum of elements int sum = 0; for (int i = 0; i < N; i++) sum += arr[i]; // looping once for all subset of same size for (int n = 1; n <= N; n++) /* each element occurs nCr(N-1 n-1) times while considering subset of size n */ result += (double)(sum * (nCr(N - 1 n - 1))) / n; return result; } // Driver code to test above methods public static void main(String[] args) { int arr[] = { 2 3 5 7 }; int N = arr.length; System.out.println(resultOfAllSubsets(arr N)); } } // This code is contributed by vt_m
C# // C# program to get sum of // average of all subsets using System; class GFG { // Returns value of Binomial // Coefficient C(n k) static int nCr(int n int k) { int[ ] C = new int[n + 1 k + 1]; int i j; // Calculate value of Binomial // Coefficient in bottom up manner for (i = 0; i <= n; i++) { for (j = 0; j <= Math.Min(i k); j++) { // Base Cases if (j == 0 || j == i) C[i j] = 1; // Calculate value using // previously stored values else C[i j] = C[i - 1 j - 1] + C[i - 1 j]; } } return C[n k]; } // method returns sum of average // of all subsets static double resultOfAllSubsets(int[] arr int N) { // Initialize result double result = 0.0; // Find sum of elements int sum = 0; for (int i = 0; i < N; i++) sum += arr[i]; // looping once for all subset // of same size for (int n = 1; n <= N; n++) /* each element occurs nCr(N-1 n-1) times while considering subset of size n */ result += (double)(sum * (nCr(N - 1 n - 1))) / n; return result; } // Driver code to test above methods public static void Main() { int[] arr = { 2 3 5 7 }; int N = arr.Length; Console.WriteLine(resultOfAllSubsets(arr N)); } } // This code is contributed by Sam007
JavaScript <script> // javascript program to get sum of // average of all subsets // Returns value of Binomial // Coefficient C(n k) function nCr(n k) { let C = new Array(n + 1); for (let i = 0; i <= n; i++) { C[i] = new Array(k + 1); for (let j = 0; j <= k; j++) { C[i][j] = 0; } } let i j; // Calculate value of Binomial // Coefficient in bottom up manner for (i = 0; i <= n; i++) { for (j = 0; j <= Math.min(i k); j++) { // Base Cases if (j == 0 || j == i) C[i][j] = 1; // Calculate value using // previously stored values else C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; } } return C[n][k]; } // method returns sum of average of all subsets function resultOfAllSubsets(arr N) { // Initialize result let result = 0.0; // Find sum of elements let sum = 0; for (let i = 0; i < N; i++) sum += arr[i]; // looping once for all subset of same size for (let n = 1; n <= N; n++) /* each element occurs nCr(N-1 n-1) times while considering subset of size n */ result += (sum * (nCr(N - 1 n - 1))) / n; return result; } let arr = [ 2 3 5 7 ]; let N = arr.length; document.write(resultOfAllSubsets(arr N)); </script>
PHP // PHP program to get sum // of average of all subsets // Returns value of Binomial // Coefficient C(n k) function nCr($n $k) { $C[$n + 1][$k + 1] = 0; $i; $j; // Calculate value of Binomial // Coefficient in bottom up manner for ($i = 0; $i <= $n; $i++) { for ($j = 0; $j <= min($i $k); $j++) { // Base Cases if ($j == 0 || $j == $i) $C[$i][$j] = 1; // Calculate value using // previously stored values else $C[$i][$j] = $C[$i - 1][$j - 1] + $C[$i - 1][$j]; } } return $C[$n][$k]; } // method returns sum of // average of all subsets function resultOfAllSubsets($arr $N) { // Initialize result $result = 0.0; // Find sum of elements $sum = 0; for ($i = 0; $i < $N; $i++) $sum += $arr[$i]; // looping once for all // subset of same size for ($n = 1; $n <= $N; $n++) /* each element occurs nCr(N-1 n-1) times while considering subset of size n */ $result += (($sum * (nCr($N - 1 $n - 1))) / $n); return $result; } // Driver Code $arr = array( 2 3 5 7 ); $N = sizeof($arr) / sizeof($arr[0]); echo resultOfAllSubsets($arr $N) ; // This code is contributed by nitin mittal. ?> Python3 # Python3 program to get sum # of average of all subsets # Returns value of Binomial # Coefficient C(n k) def nCr(n k): C = [[0 for i in range(k + 1)] for j in range(n + 1)] # Calculate value of Binomial # Coefficient in bottom up manner for i in range(n + 1): for j in range(min(i k) + 1): # Base Cases if (j == 0 or j == i): C[i][j] = 1 # Calculate value using # previously stored values else: C[i][j] = C[i-1][j-1] + C[i-1][j] return C[n][k] # Method returns sum of # average of all subsets def resultOfAllSubsets(arr N): result = 0.0 # Initialize result # Find sum of elements sum = 0 for i in range(N): sum += arr[i] # looping once for all subset of same size for n in range(1 N + 1): # each element occurs nCr(N-1 n-1) times while # considering subset of size n */ result += (sum * (nCr(N - 1 n - 1))) / n return result # Driver code arr = [2 3 5 7] N = len(arr) print(resultOfAllSubsets(arr N)) # This code is contributed by Anant Agarwal.
Producción
63.75
Complejidad del tiempo: En3)
Espacio Auxiliar: En2)
Enfoque eficiente: optimización del espacio O(1)
Para optimizar la complejidad espacial del enfoque anterior, podemos utilizar un enfoque más eficiente que evite la necesidad de toda la matriz. DO[][] para almacenar coeficientes binomiales. En su lugar, podemos usar una fórmula combinada para calcular el coeficiente binomial directamente cuando sea necesario.
Pasos de implementación:
- Itere sobre los elementos de la matriz y calcule la suma de todos los elementos.
- Itere sobre cada tamaño de subconjunto de 1 a N.
- Dentro del bucle calcula el promedio de la suma de elementos multiplicada por el coeficiente binomial para el tamaño del subconjunto. Sume el promedio calculado al resultado.
- Devuelve el resultado final.
Implementación:
C++#include using namespace std; // Method to calculate binomial coefficient C(n k) int binomialCoeff(int n int k) { int res = 1; // Since C(n k) = C(n n-k) if (k > n - k) k = n - k; // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1] for (int i = 0; i < k; i++) { res *= (n - i); res /= (i + 1); } return res; } // Method to calculate the sum of the average of all subsets double resultOfAllSubsets(int arr[] int N) { double result = 0.0; int sum = 0; // Calculate the sum of elements for (int i = 0; i < N; i++) sum += arr[i]; // Loop for each subset size for (int n = 1; n <= N; n++) result += (double)(sum * binomialCoeff(N - 1 n - 1)) / n; return result; } // Driver code to test the above methods int main() { int arr[] = { 2 3 5 7 }; int N = sizeof(arr) / sizeof(int); cout << resultOfAllSubsets(arr N) << endl; return 0; }
Java import java.util.Arrays; public class Main { // Method to calculate binomial coefficient C(n k) static int binomialCoeff(int n int k) { int res = 1; // Since C(n k) = C(n n-k) if (k > n - k) k = n - k; // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1] for (int i = 0; i < k; i++) { res *= (n - i); res /= (i + 1); } return res; } // Method to calculate the sum of the average of all subsets static double resultOfAllSubsets(int arr[] int N) { double result = 0.0; int sum = 0; // Calculate the sum of elements for (int i = 0; i < N; i++) sum += arr[i]; // Loop for each subset size for (int n = 1; n <= N; n++) result += (double) (sum * binomialCoeff(N - 1 n - 1)) / n; return result; } // Driver code to test the above methods public static void main(String[] args) { int arr[] = {2 3 5 7}; int N = arr.length; System.out.println(resultOfAllSubsets(arr N)); } }
C# using System; public class MainClass { // Method to calculate binomial coefficient C(n k) static int BinomialCoeff(int n int k) { int res = 1; // Since C(n k) = C(n n-k) if (k > n - k) k = n - k; // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1] for (int i = 0; i < k; i++) { res *= (n - i); res /= (i + 1); } return res; } // Method to calculate the sum of the average of all subsets static double ResultOfAllSubsets(int[] arr int N) { double result = 0.0; int sumVal = 0; // Calculate the sum of elements for (int i = 0; i < N; i++) sumVal += arr[i]; // Loop for each subset size for (int n = 1; n <= N; n++) result += (double)(sumVal * BinomialCoeff(N - 1 n - 1)) / n; return result; } // Driver code to test the above methods public static void Main() { int[] arr = { 2 3 5 7 }; int N = arr.Length; Console.WriteLine(ResultOfAllSubsets(arr N)); } }
JavaScript // Function to calculate binomial coefficient C(n k) function binomialCoeff(n k) { let res = 1; // Since C(n k) = C(n n-k) if (k > n - k) k = n - k; // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1] for (let i = 0; i < k; i++) { res *= (n - i); res /= (i + 1); } return res; } // Function to calculate the sum of the average of all subsets function resultOfAllSubsets(arr) { let result = 0.0; let sum = arr.reduce((acc val) => acc + val 0); // Loop for each subset size for (let n = 1; n <= arr.length; n++) { result += (sum * binomialCoeff(arr.length - 1 n - 1)) / n; } return result; } const arr = [2 3 5 7]; console.log(resultOfAllSubsets(arr));
Python3 # Method to calculate binomial coefficient C(n k) def binomialCoeff(n k): res = 1 # Since C(n k) = C(n n-k) if k > n - k: k = n - k # Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1] for i in range(k): res *= (n - i) res //= (i + 1) return res # Method to calculate the sum of the average of all subsets def resultOfAllSubsets(arr N): result = 0.0 sum_val = 0 # Calculate the sum of elements for i in range(N): sum_val += arr[i] # Loop for each subset size for n in range(1 N + 1): result += (sum_val * binomialCoeff(N - 1 n - 1)) / n return result # Driver code to test the above methods arr = [2 3 5 7] N = len(arr) print(resultOfAllSubsets(arr N))
Producción
63.75 Complejidad del tiempo: O(n^2)
Espacio Auxiliar: O(1)