logo

Árbol de expansión de producto mínimo

Dado un gráfico conectado y no dirigido, un árbol de expansión de ese gráfico es un subgrafo que es un árbol y conecta todos los vértices. Un solo gráfico puede tener muchos árboles de expansión diferentes. Un árbol de expansión de producto mínimo para un gráfico ponderado conectado y no dirigido es un árbol de expansión con un producto de peso menor o igual al producto de peso de todos los demás árboles de expansión. El producto de peso de un árbol de expansión es el producto de los pesos correspondientes a cada borde del árbol de expansión. Todos los pesos del gráfico dado serán positivos por simplicidad.

Ejemplos:

Árbol de expansión de producto mínimo



Minimum Product that we can obtain is 180 for above graph by choosing edges 0-1 1-2 0-3 and 1-4

Este problema se puede resolver utilizando algoritmos estándar de árbol de expansión mínima como Kruskal ( https://www.geeksforgeeks.org/dsa/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/ )y remilgado pero necesitamos modificar nuestro gráfico para usar estos algoritmos. Los algoritmos de árbol de expansión mínimo intentan minimizar la suma total de pesos. Aquí necesitamos minimizar el producto total de pesos. Podemos utilizar la propiedad de logaritmos para superar este problema. 
Como sabemos 

 log(w1* w2 * w3 * …. * wN) = log(w1) + log(w2) + log(w3) ….. + log(wN)


Podemos reemplazar cada peso del gráfico por su valor logarítmico y luego aplicamos cualquier algoritmo de árbol de expansión mínimo que intentará minimizar la suma de log(wi), lo que a su vez minimiza el producto del peso. 
Por ejemplo, los pasos se muestran a continuación. 
 

Árbol de expansión de producto mínimo


En el siguiente código, primero construimos el gráfico logarítmico a partir del gráfico de entrada dado, luego ese gráfico se proporciona como entrada al algoritmo MST de prim, que minimizará la suma total de pesos del árbol. Dado que los pesos del gráfico modificado son logaritmos del gráfico de entrada real, en realidad minimizamos el producto de los pesos del árbol de expansión.  

variable global js
C++
// A C++ program for getting minimum product // spanning tree The program is for adjacency matrix // representation of the graph #include    // Number of vertices in the graph #define V 5 // A utility function to find the vertex with minimum // key value from the set of vertices not yet included // in MST int minKey(int key[] bool mstSet[]) {  // Initialize min value  int min = INT_MAX min_index;  for (int v = 0; v < V; v++)  if (mstSet[v] == false && key[v] < min)  min = key[v] min_index = v;  return min_index; } // A utility function to print the constructed MST // stored in parent[] and print Minimum Obtainable // product int printMST(int parent[] int n int graph[V][V]) {  printf('Edge Weightn');  int minProduct = 1;  for (int i = 1; i < V; i++) {  printf('%d - %d %d n'  parent[i] i graph[i][parent[i]]);  minProduct *= graph[i][parent[i]];  }  printf('Minimum Obtainable product is %dn'  minProduct); } // Function to construct and print MST for a graph // represented using adjacency matrix representation // inputGraph is sent for printing actual edges and // logGraph is sent for actual MST operations void primMST(int inputGraph[V][V] double logGraph[V][V]) {  int parent[V]; // Array to store constructed MST  int key[V]; // Key values used to pick minimum  // weight edge in cut  bool mstSet[V]; // To represent set of vertices not  // yet included in MST  // Initialize all keys as INFINITE  for (int i = 0; i < V; i++)  key[i] = INT_MAX mstSet[i] = false;  // Always include first 1st vertex in MST.  key[0] = 0; // Make key 0 so that this vertex is  // picked as first vertex  parent[0] = -1; // First node is always root of MST  // The MST will have V vertices  for (int count = 0; count < V - 1; count++) {  // Pick the minimum key vertex from the set of  // vertices not yet included in MST  int u = minKey(key mstSet);  // Add the picked vertex to the MST Set  mstSet[u] = true;  // Update key value and parent index of the  // adjacent vertices of the picked vertex.  // Consider only those vertices which are not yet  // included in MST  for (int v = 0; v < V; v++)  // logGraph[u][v] is non zero only for  // adjacent vertices of m mstSet[v] is false  // for vertices not yet included in MST  // Update the key only if logGraph[u][v] is  // smaller than key[v]  if (logGraph[u][v] > 0 && mstSet[v] == false && logGraph[u][v] < key[v])  parent[v] = u key[v] = logGraph[u][v];  }  // print the constructed MST  printMST(parent V inputGraph); } // Method to get minimum product spanning tree void minimumProductMST(int graph[V][V]) {  double logGraph[V][V];  // Constructing logGraph from original graph  for (int i = 0; i < V; i++) {  for (int j = 0; j < V; j++) {  if (graph[i][j] > 0)  logGraph[i][j] = log(graph[i][j]);  else  logGraph[i][j] = 0;  }  }  // Applying standard Prim's MST algorithm on  // Log graph.  primMST(graph logGraph); } // driver program to test above function int main() {  /* Let us create the following graph  2 3  (0)--(1)--(2)  | /  |  6| 8/ 5 |7  | /  |  (3)-------(4)  9 */  int graph[V][V] = {  { 0 2 0 6 0 }  { 2 0 3 8 5 }  { 0 3 0 0 7 }  { 6 8 0 0 9 }  { 0 5 7 9 0 }  };  // Print the solution  minimumProductMST(graph);  return 0; } 
Java
// A Java program for getting minimum product // spanning tree The program is for adjacency matrix // representation of the graph import java.util.*; class GFG {  // Number of vertices in the graph  static int V = 5;  // A utility function to find the vertex with minimum  // key value from the set of vertices not yet included  // in MST  static int minKey(int key[] boolean[] mstSet)  {  // Initialize min value  int min = Integer.MAX_VALUE min_index = 0;  for (int v = 0; v < V; v++) {  if (mstSet[v] == false && key[v] < min) {  min = key[v];  min_index = v;  }  }  return min_index;  }  // A utility function to print the constructed MST  // stored in parent[] and print Minimum Obtainable  // product  static void printMST(int parent[] int n int graph[][])  {  System.out.printf('Edge Weightn');  int minProduct = 1;  for (int i = 1; i < V; i++) {  System.out.printf('%d - %d %d n'  parent[i] i graph[i][parent[i]]);  minProduct *= graph[i][parent[i]];  }  System.out.printf('Minimum Obtainable product is %dn'  minProduct);  }  // Function to construct and print MST for a graph  // represented using adjacency matrix representation  // inputGraph is sent for printing actual edges and  // logGraph is sent for actual MST operations  static void primMST(int inputGraph[][] double logGraph[][])  {  int[] parent = new int[V]; // Array to store constructed MST  int[] key = new int[V]; // Key values used to pick minimum  // weight edge in cut  boolean[] mstSet = new boolean[V]; // To represent set of vertices not  // yet included in MST  // Initialize all keys as INFINITE  for (int i = 0; i < V; i++) {  key[i] = Integer.MAX_VALUE;  mstSet[i] = false;  }  // Always include first 1st vertex in MST.  key[0] = 0; // Make key 0 so that this vertex is  // picked as first vertex  parent[0] = -1; // First node is always root of MST  // The MST will have V vertices  for (int count = 0; count < V - 1; count++) {  // Pick the minimum key vertex from the set of  // vertices not yet included in MST  int u = minKey(key mstSet);  // Add the picked vertex to the MST Set  mstSet[u] = true;  // Update key value and parent index of the  // adjacent vertices of the picked vertex.  // Consider only those vertices which are not yet  // included in MST  for (int v = 0; v < V; v++) // logGraph[u][v] is non zero only for  // adjacent vertices of m mstSet[v] is false  // for vertices not yet included in MST  // Update the key only if logGraph[u][v] is  // smaller than key[v]  {  if (logGraph[u][v] > 0  && mstSet[v] == false  && logGraph[u][v] < key[v]) {  parent[v] = u;  key[v] = (int)logGraph[u][v];  }  }  }  // print the constructed MST  printMST(parent V inputGraph);  }  // Method to get minimum product spanning tree  static void minimumProductMST(int graph[][])  {  double[][] logGraph = new double[V][V];  // Constructing logGraph from original graph  for (int i = 0; i < V; i++) {  for (int j = 0; j < V; j++) {  if (graph[i][j] > 0) {  logGraph[i][j] = Math.log(graph[i][j]);  }  else {  logGraph[i][j] = 0;  }  }  }  // Applying standard Prim's MST algorithm on  // Log graph.  primMST(graph logGraph);  }  // Driver code  public static void main(String[] args)  {  /* Let us create the following graph  2 3  (0)--(1)--(2)  | /  |  6| 8/ 5 |7  | /  |  (3)-------(4)  9 */  int graph[][] = {  { 0 2 0 6 0 }  { 2 0 3 8 5 }  { 0 3 0 0 7 }  { 6 8 0 0 9 }  { 0 5 7 9 0 }  };  // Print the solution  minimumProductMST(graph);  } } // This code has been contributed by 29AjayKumar 
Python3
# A Python3 program for getting minimum # product spanning tree The program is  # for adjacency matrix representation # of the graph  import math # Number of vertices in the graph  V = 5 # A utility function to find the vertex # with minimum key value from the set  # of vertices not yet included in MST  def minKey(key mstSet): # Initialize min value  min = 10000000 min_index = 0 for v in range(V): if (mstSet[v] == False and key[v] < min): min = key[v] min_index = v return min_index # A utility function to print the constructed  # MST stored in parent[] and print Minimum  # Obtainable product  def printMST(parent n graph): print('Edge Weight') minProduct = 1 for i in range(1 V): print('{} - {} {} '.format(parent[i] i graph[i][parent[i]])) minProduct *= graph[i][parent[i]] print('Minimum Obtainable product is {}'.format( minProduct)) # Function to construct and print MST for  # a graph represented using adjacency  # matrix representation inputGraph is # sent for printing actual edges and  # logGraph is sent for actual MST  # operations  def primMST(inputGraph logGraph): # Array to store constructed MST  parent = [0 for i in range(V)] # Key values used to pick minimum  key = [10000000 for i in range(V)] # weight edge in cut  # To represent set of vertices not  mstSet = [False for i in range(V)] # Yet included in MST  # Always include first 1st vertex in MST  # Make key 0 so that this vertex is  key[0] = 0 # Picked as first vertex  # First node is always root of MST  parent[0] = -1 # The MST will have V vertices  for count in range(0 V - 1): # Pick the minimum key vertex from # the set of vertices not yet  # included in MST  u = minKey(key mstSet) # Add the picked vertex to the MST Set  mstSet[u] = True # Update key value and parent index # of the adjacent vertices of the  # picked vertex. Consider only those  # vertices which are not yet  # included in MST  for v in range(V): # logGraph[u][v] is non zero only # for adjacent vertices of m  # mstSet[v] is false for vertices # not yet included in MST. Update  # the key only if logGraph[u][v] is  # smaller than key[v]  if (logGraph[u][v] > 0 and mstSet[v] == False and logGraph[u][v] < key[v]): parent[v] = u key[v] = logGraph[u][v] # Print the constructed MST  printMST(parent V inputGraph) # Method to get minimum product spanning tree  def minimumProductMST(graph): logGraph = [[0 for j in range(V)] for i in range(V)] # Constructing logGraph from  # original graph  for i in range(V): for j in range(V): if (graph[i][j] > 0): logGraph[i][j] = math.log(graph[i][j]) else: logGraph[i][j] = 0 # Applying standard Prim's MST algorithm # on Log graph.  primMST(graph logGraph) # Driver code if __name__=='__main__':    ''' Let us create the following graph   2 3   (0)--(1)--(2)   | /  |   6| 8/ 5 |7   | /  |   (3)-------(4)   9 ''' graph = [ [ 0 2 0 6 0 ] [ 2 0 3 8 5 ] [ 0 3 0 0 7 ] [ 6 8 0 0 9 ] [ 0 5 7 9 0 ] ] # Print the solution  minimumProductMST(graph) # This code is contributed by rutvik_56 
C#
// C# program for getting minimum product // spanning tree The program is for adjacency matrix // representation of the graph using System; class GFG {  // Number of vertices in the graph  static int V = 5;  // A utility function to find the vertex with minimum  // key value from the set of vertices not yet included  // in MST  static int minKey(int[] key Boolean[] mstSet)  {  // Initialize min value  int min = int.MaxValue min_index = 0;  for (int v = 0; v < V; v++) {  if (mstSet[v] == false && key[v] < min) {  min = key[v];  min_index = v;  }  }  return min_index;  }  // A utility function to print the constructed MST  // stored in parent[] and print Minimum Obtainable  // product  static void printMST(int[] parent int n int[ ] graph)  {  Console.Write('Edge Weightn');  int minProduct = 1;  for (int i = 1; i < V; i++) {  Console.Write('{0} - {1} {2} n'  parent[i] i graph[i parent[i]]);  minProduct *= graph[i parent[i]];  }  Console.Write('Minimum Obtainable product is {0}n'  minProduct);  }  // Function to construct and print MST for a graph  // represented using adjacency matrix representation  // inputGraph is sent for printing actual edges and  // logGraph is sent for actual MST operations  static void primMST(int[ ] inputGraph double[ ] logGraph)  {  int[] parent = new int[V]; // Array to store constructed MST  int[] key = new int[V]; // Key values used to pick minimum  // weight edge in cut  Boolean[] mstSet = new Boolean[V]; // To represent set of vertices not  // yet included in MST  // Initialize all keys as INFINITE  for (int i = 0; i < V; i++) {  key[i] = int.MaxValue;  mstSet[i] = false;  }  // Always include first 1st vertex in MST.  key[0] = 0; // Make key 0 so that this vertex is  // picked as first vertex  parent[0] = -1; // First node is always root of MST  // The MST will have V vertices  for (int count = 0; count < V - 1; count++) {  // Pick the minimum key vertex from the set of  // vertices not yet included in MST  int u = minKey(key mstSet);  // Add the picked vertex to the MST Set  mstSet[u] = true;  // Update key value and parent index of the  // adjacent vertices of the picked vertex.  // Consider only those vertices which are not yet  // included in MST  for (int v = 0; v < V; v++) // logGraph[u v] is non zero only for  // adjacent vertices of m mstSet[v] is false  // for vertices not yet included in MST  // Update the key only if logGraph[u v] is  // smaller than key[v]  {  if (logGraph[u v] > 0  && mstSet[v] == false  && logGraph[u v] < key[v]) {  parent[v] = u;  key[v] = (int)logGraph[u v];  }  }  }  // print the constructed MST  printMST(parent V inputGraph);  }  // Method to get minimum product spanning tree  static void minimumProductMST(int[ ] graph)  {  double[ ] logGraph = new double[V V];  // Constructing logGraph from original graph  for (int i = 0; i < V; i++) {  for (int j = 0; j < V; j++) {  if (graph[i j] > 0) {  logGraph[i j] = Math.Log(graph[i j]);  }  else {  logGraph[i j] = 0;  }  }  }  // Applying standard Prim's MST algorithm on  // Log graph.  primMST(graph logGraph);  }  // Driver code  public static void Main(String[] args)  {  /* Let us create the following graph  2 3  (0)--(1)--(2)  | /  |  6| 8/ 5 |7  | /  |  (3)-------(4)  9 */  int[ ] graph = {  { 0 2 0 6 0 }  { 2 0 3 8 5 }  { 0 3 0 0 7 }  { 6 8 0 0 9 }  { 0 5 7 9 0 }  };  // Print the solution  minimumProductMST(graph);  } } /* This code contributed by PrinciRaj1992 */ 
JavaScript
<script> // A Javascript program for getting minimum product // spanning tree The program is for adjacency matrix // representation of the graph // Number of vertices in the graph let V = 5; // A utility function to find the vertex with minimum  // key value from the set of vertices not yet included  // in MST function minKey(keymstSet) {  // Initialize min value  let min = Number.MAX_VALUE min_index = 0;    for (let v = 0; v < V; v++) {  if (mstSet[v] == false && key[v] < min) {  min = key[v];  min_index = v;  }  }  return min_index; } // A utility function to print the constructed MST  // stored in parent[] and print Minimum Obtainable  // product function printMST(parentngraph) {  document.write('Edge Weight  
'
); let minProduct = 1; for (let i = 1; i < V; i++) { document.write( parent[i]+' - '+ i+' ' +graph[i][parent[i]]+'
'
); minProduct *= graph[i][parent[i]]; } document.write('Minimum Obtainable product is ' minProduct+'
'
); } // Function to construct and print MST for a graph // represented using adjacency matrix representation // inputGraph is sent for printing actual edges and // logGraph is sent for actual MST operations function primMST(inputGraphlogGraph) { let parent = new Array(V); // Array to store constructed MST let key = new Array(V); // Key values used to pick minimum // weight edge in cut let mstSet = new Array(V); // To represent set of vertices not // yet included in MST // Initialize all keys as INFINITE for (let i = 0; i < V; i++) { key[i] = Number.MAX_VALUE; mstSet[i] = false; } // Always include first 1st vertex in MST. key[0] = 0; // Make key 0 so that this vertex is // picked as first vertex parent[0] = -1; // First node is always root of MST // The MST will have V vertices for (let count = 0; count < V - 1; count++) { // Pick the minimum key vertex from the set of // vertices not yet included in MST let u = minKey(key mstSet); // Add the picked vertex to the MST Set mstSet[u] = true; // Update key value and parent index of the // adjacent vertices of the picked vertex. // Consider only those vertices which are not yet // included in MST for (let v = 0; v < V; v++) // logGraph[u][v] is non zero only for // adjacent vertices of m mstSet[v] is false // for vertices not yet included in MST // Update the key only if logGraph[u][v] is // smaller than key[v] { if (logGraph[u][v] > 0 && mstSet[v] == false && logGraph[u][v] < key[v]) { parent[v] = u; key[v] = logGraph[u][v]; } } } // print the constructed MST printMST(parent V inputGraph); } // Method to get minimum product spanning tree function minimumProductMST(graph) { let logGraph = new Array(V); // Constructing logGraph from original graph for (let i = 0; i < V; i++) { logGraph[i]=new Array(V); for (let j = 0; j < V; j++) { if (graph[i][j] > 0) { logGraph[i][j] = Math.log(graph[i][j]); } else { logGraph[i][j] = 0; } } } // Applying standard Prim's MST algorithm on // Log graph. primMST(graph logGraph); } // Driver code /* Let us create the following graph 2 3 (0)--(1)--(2) | / | 6| 8/ 5 |7 | / | (3)-------(4) 9 */ let graph = [ [ 0 2 0 6 0 ] [ 2 0 3 8 5 ] [ 0 3 0 0 7 ] [ 6 8 0 0 9 ] [ 0 5 7 9 0 ] ]; // Print the solution minimumProductMST(graph); // This code is contributed by rag2127 </script>

Producción:  

Edge Weight 0 - 1 2 1 - 2 3 0 - 3 6 1 - 4 5 Minimum Obtainable product is 180

El complejidad del tiempo de este algoritmo es O(V2) ya que hay dos bucles for anidados que iteran sobre todos los vértices. 

El complejidad espacial de este algoritmo es O(V2) ya que estamos usando una matriz 2D de tamaño V x V para almacenar el gráfico de entrada.


 

Crear cuestionario