logo

Algoritmos genéticos

Los algoritmos genéticos (GA) son algoritmos de búsqueda heurística adaptativa que pertenecen a la mayor parte de los algoritmos evolutivos. Los algoritmos genéticos se basan en las ideas de selección natural y genética. Se trata de una explotación inteligente de búsquedas aleatorias provistas de datos históricos para dirigir la búsqueda a la región de mejor rendimiento en el espacio de la solución. Se utilizan comúnmente para generar soluciones de alta calidad para problemas de optimización y problemas de búsqueda.

Los algoritmos genéticos simulan el proceso de selección natural. lo que significa que aquellas especies que pueden adaptarse a los cambios en su entorno pueden sobrevivir, reproducirse y pasar a la siguiente generación. En palabras simples, simulan la supervivencia del más apto entre individuos de generaciones consecutivas para resolver un problema. Cada generación está formada por una población de individuos. y cada individuo representa un punto en el espacio de búsqueda y posible solución. Cada individuo se representa como una cadena de caracteres/entero/flotante/bits. Esta cadena es análoga al cromosoma.



Fundación de los algoritmos genéticos.

Los algoritmos genéticos se basan en una analogía con la estructura genética y el comportamiento de los cromosomas de la población. A continuación se presenta la base de los AG basada en esta analogía:

  1. Los individuos de la población compiten por los recursos y se aparean.
  2. Los individuos que tienen éxito (los más aptos) se aparean para crear más descendencia que otros.
  3. Los genes del padre más apto se propagan a lo largo de la generación, es decir, a veces los padres crean una descendencia que es mejor que cualquiera de los padres.
  4. Por tanto, cada generación sucesiva es más adecuada para su entorno.

Espacio de búsqueda

La población de individuos se mantiene dentro del espacio de búsqueda. Cada individuo representa una solución en el espacio de búsqueda para un problema determinado. Cada individuo está codificado como un vector de longitud finita (análogo al cromosoma) de componentes. Estos componentes variables son análogos a los genes. Así, un cromosoma (individuo) está compuesto de varios genes (componentes variables).



Puntuación de condición física

Se otorga una puntuación de condición física a cada individuo que muestra la capacidad de un individuo para competir . Se busca el individuo que tenga una puntuación de aptitud física óptima (o casi óptima).

Los AG mantienen la población de n individuos (cromosomas/soluciones) junto con sus puntuaciones de aptitud. Los individuos que tienen mejores puntuaciones de aptitud tienen más posibilidades de reproducirse que otros. Se seleccionan los individuos con mejores puntuaciones de aptitud física, quienes se aparean y producen mejor descendencia combinando cromosomas de los padres. El tamaño de la población es estático, por lo que se debe crear espacio para los recién llegados. Entonces, algunos individuos mueren y son reemplazados por recién llegados, creando eventualmente una nueva generación cuando se agotan todas las oportunidades de apareamiento de la antigua población. Se espera que a lo largo de las generaciones sucesivas lleguen mejores soluciones mientras los menos aptos mueren.

Cada nueva generación tiene en promedio más genes mejores que el individuo (solución) de generaciones anteriores. Así cada nueva generación tiene mejores soluciones parciales que las generaciones anteriores. Una vez que la descendencia producida no tiene diferencias significativas con la descendencia producida por poblaciones anteriores, la población converge. Se dice que el algoritmo converge hacia un conjunto de soluciones para el problema.



Operadores de algoritmos genéticos

Una vez que se crea la generación inicial, el algoritmo hace evolucionar la generación utilizando los siguientes operadores:
1) Operador de Selección: La idea es dar preferencia a los individuos con buenos puntajes de aptitud física y permitirles transmitir sus genes a generaciones sucesivas.
2) Operador cruzado: Esto representa el apareamiento entre individuos. Se seleccionan dos individuos utilizando el operador de selección y los sitios de cruce se eligen al azar. Luego, los genes en estos sitios de cruce se intercambian creando así un individuo completamente nuevo (descendencia). Por ejemplo -

3) Operador de mutación: La idea clave es insertar genes aleatorios en la descendencia para mantener la diversidad en la población y evitar una convergencia prematura. Por ejemplo -

javascript para bucle

Todo el algoritmo se puede resumir como:

1) Randomly initialize populations p 2) Determine fitness of population 3) Until convergence repeat:  a) Select parents from population  b) Crossover and generate new population  c) Perform mutation on new population  d) Calculate fitness for new population>

Problema de ejemplo y solución utilizando algoritmos genéticos.

Dada una cadena de destino, el objetivo es producir una cadena de destino a partir de una cadena aleatoria de la misma longitud. En la siguiente implementación, se hacen las siguientes analogías:

  • Los caracteres A-Z, a-z, 0-9 y otros símbolos especiales se consideran genes.
  • Una cadena generada por estos caracteres se considera cromosoma/solución/individuo.

Puntuación de aptitud es el número de caracteres que difieren de los caracteres de la cadena de destino en un índice particular. Por lo tanto, se da más preferencia al individuo que tiene un valor de aptitud más bajo.

C++




cómo convertir caracteres a cadenas

// C++ program to create target string, starting from> // random string using Genetic Algorithm> > #include> using> namespace> std;> > // Number of individuals in each generation> #define POPULATION_SIZE 100> > // Valid Genes> const> string GENES =>'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP'>> 'QRSTUVWXYZ 1234567890, .-;:_!'#%&/()=?@${[]}'>;> > // Target string to be generated> const> string TARGET =>'I love techcodeview.com'>;> > // Function to generate random numbers in given range> int> random_num(>int> start,>int> end)> {> >int> range = (end-start)+1;> >int> random_int = start+(>rand>()%range);> >return> random_int;> }> > // Create random genes for mutation> char> mutated_genes()> {> >int> len = GENES.size();> >int> r = random_num(0, len-1);> >return> GENES[r];> }> > // create chromosome or string of genes> string create_gnome()> {> >int> len = TARGET.size();> >string gnome =>''>;> >for>(>int> i = 0;i gnome += mutated_genes(); return gnome; } // Class representing individual in population class Individual { public: string chromosome; int fitness; Individual(string chromosome); Individual mate(Individual parent2); int cal_fitness(); }; Individual::Individual(string chromosome) { this->cromosoma = cromosoma; aptitud = cal_fitness(); }; // Realizar apareamiento y producir nueva descendencia Individual Individual::mate(Individual par2) { // cromosoma para la descendencia string child_chromosome = ''; int len ​​= cromosoma.tamaño(); for(int i = 0;i { // probabilidad aleatoria float p = random_num(0, 100)/100; // si prob es menor que 0,45, inserta el gen // del padre 1 if(p<0.45) child_chromosome += chromosome[i]; // if prob is between 0.45 and 0.90, insert // gene from parent 2 else if(p <0.90) child_chromosome += par2.chromosome[i]; // otherwise insert random gene(mutate), // for maintaining diversity else child_chromosome += mutated_genes(); } // create new Individual(offspring) using // generated chromosome for offspring return Individual(child_chromosome); }; // Calculate fitness score, it is the number of // characters in string which differ from target // string. int Individual::cal_fitness() { int len = TARGET.size(); int fitness = 0; for(int i = 0;i { if(chromosome[i] != TARGET[i]) fitness++; } return fitness; }; // Overloading bool operator<(const Individual &ind1, const Individual &ind2) { return ind1.fitness } // Driver code int main() { srand((unsigned)(time(0))); // current generation int generation = 0; vector population; bool found = false; // create initial population for(int i = 0;i { string gnome = create_gnome(); population.push_back(Individual(gnome)); } while(! found) { // sort the population in increasing order of fitness score sort(population.begin(), population.end()); // if the individual having lowest fitness score ie. // 0 then we know that we have reached to the target // and break the loop if(population[0].fitness <= 0) { found = true; break; } // Otherwise generate new offsprings for new generation vector new_generation; // Perform Elitism, that mean 10% of fittest population // goes to the next generation int s = (10*POPULATION_SIZE)/100; for(int i = 0;i new_generation.push_back(population[i]); // From 50% of fittest population, Individuals // will mate to produce offspring s = (90*POPULATION_SIZE)/100; for(int i = 0;i { int len = population.size(); int r = random_num(0, 50); Individual parent1 = population[r]; r = random_num(0, 50); Individual parent2 = population[r]; Individual offspring = parent1.mate(parent2); new_generation.push_back(offspring); } population = new_generation; cout<< 'Generation: ' << generation << ' '; cout<< 'String: '<< population[0].chromosome <<' '; cout<< 'Fitness: '<< population[0].fitness << ' '; generation++; } cout<< 'Generation: ' << generation << ' '; cout<< 'String: '<< population[0].chromosome <<' '; cout<< 'Fitness: '<< population[0].fitness << ' '; }>

>

>

Java




cómo leer un archivo csv en java

import> java.util.ArrayList;> import> java.util.Collections;> import> java.util.List;> import> java.util.Random;> > public> class> GeneticAlgorithm {> >// Number of individuals in each generation> >private> static> final> int> POPULATION_SIZE =>100>;> > >// Valid Genes> >private> static> final> String GENES =>'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ 1234567890, .-;:_!'#%&/()=?@${[]}'>;> > >// Target string to be generated> >private> static> final> String TARGET =>'I love techcodeview.com'>;> > >// Function to generate random numbers in given range> >private> static> int> randomNum(>int> start,>int> end) {> >Random rand =>new> Random();> >return> rand.nextInt(end - start +>1>) + start;> >}> > >// Create random genes for mutation> >private> static> char> mutatedGenes() {> >int> len = GENES.length();> >int> r = randomNum(>0>, len ->1>);> >return> GENES.charAt(r);> >}> > >// Create chromosome or string of genes> >private> static> String createGnome() {> >int> len = TARGET.length();> >StringBuilder gnome =>new> StringBuilder();> >for> (>int> i =>0>; i gnome.append(mutatedGenes()); return gnome.toString(); } // Class representing individual in population private static class Individual implements Comparable { String chromosome; int fitness; Individual(String chromosome) { this.chromosome = chromosome; fitness = calFitness(); } // Perform mating and produce new offspring Individual mate(Individual par2) { StringBuilder childChromosome = new StringBuilder(); int len = chromosome.length(); for (int i = 0; i // random probability float p = randomNum(0, 100) / 100f; // if prob is less than 0.45, insert gene from parent 1 if (p <0.45) childChromosome.append(chromosome.charAt(i)); // if prob is between 0.45 and 0.90, insert gene from parent 2 else if (p <0.90) childChromosome.append(par2.chromosome.charAt(i)); // otherwise insert random gene(mutate), for maintaining diversity else childChromosome.append(mutatedGenes()); } // create new Individual(offspring) using generated chromosome for offspring return new Individual(childChromosome.toString()); } // Calculate fitness score, it is the number of characters in string which differ from target string private int calFitness() { int len = TARGET.length(); int fitness = 0; for (int i = 0; i if (chromosome.charAt(i) != TARGET.charAt(i)) fitness++; } return fitness; } @Override public int compareTo(Individual o) { return Integer.compare(this.fitness, o.fitness); } } // Driver code public static void main(String[] args) { // current generation int generation = 0; List population = new ArrayList(); boolean found = false; // create initial population for (int i = 0; i String gnome = createGnome(); population.add(new Individual(gnome)); } while (!found) { // sort the population in increasing order of fitness score Collections.sort(population); // if the individual having lowest fitness score i.e. 0 then we know that we have reached to the target // and break the loop if (population.get(0).fitness <= 0) { found = true; break; } // Otherwise generate new offsprings for new generation List newGeneration = new ArrayList(); // Perform Elitism, that mean 10% of fittest population goes to the next generation int s = (10 * POPULATION_SIZE) / 100; for (int i = 0; i newGeneration.add(population.get(i)); // From 50% of fittest population, Individuals will mate to produce offspring s = (90 * POPULATION_SIZE) / 100; for (int i = 0; i int len = population.size(); int r = randomNum(0, 50); Individual parent1 = population.get(r); r = randomNum(0, 50); Individual parent2 = population.get(r); Individual offspring = parent1.mate(parent2); newGeneration.add(offspring); } population = newGeneration; System.out.print('Generation: ' + generation + ' '); System.out.print('String: ' + population.get(0).chromosome + ' '); System.out.println('Fitness: ' + population.get(0).fitness); generation++; } System.out.print('Generation: ' + generation + ' '); System.out.print('String: ' + population.get(0).chromosome + ' '); System.out.println('Fitness: ' + population.get(0).fitness); } }>

>

>

Python3




# Python3 program to create target string, starting from> # random string using Genetic Algorithm> > import> random> > # Number of individuals in each generation> POPULATION_SIZE>=> 100> > # Valid genes> GENES>=> '''abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP> QRSTUVWXYZ 1234567890, .-;:_!'#%&/()=?@${[]}'''> > # Target string to be generated> TARGET>=> 'I love techcodeview.com'> > class> Individual(>object>):> >'''> >Class representing individual in population> >'''> >def> __init__(>self>, chromosome):> >self>.chromosome>=> chromosome> >self>.fitness>=> self>.cal_fitness()> > >@classmethod> >def> mutated_genes(>self>):> >'''> >create random genes for mutation> >'''> >global> GENES> >gene>=> random.choice(GENES)> >return> gene> > >@classmethod> >def> create_gnome(>self>):> >'''> >create chromosome or string of genes> >'''> >global> TARGET> >gnome_len>=> len>(TARGET)> >return> [>self>.mutated_genes()>for> _>in> range>(gnome_len)]> > >def> mate(>self>, par2):> >'''> >Perform mating and produce new offspring> >'''> > ># chromosome for offspring> >child_chromosome>=> []> >for> gp1, gp2>in> zip>(>self>.chromosome, par2.chromosome):> > ># random probability> >prob>=> random.random()> > ># if prob is less than 0.45, insert gene> ># from parent 1> >if> prob <>0.45>:> >child_chromosome.append(gp1)> > ># if prob is between 0.45 and 0.90, insert> ># gene from parent 2> >elif> prob <>0.90>:> >child_chromosome.append(gp2)> > ># otherwise insert random gene(mutate),> ># for maintaining diversity> >else>:> >child_chromosome.append(>self>.mutated_genes())> > ># create new Individual(offspring) using> ># generated chromosome for offspring> >return> Individual(child_chromosome)> > >def> cal_fitness(>self>):> >'''> >Calculate fitness score, it is the number of> >characters in string which differ from target> >string.> >'''> >global> TARGET> >fitness>=> 0> >for> gs, gt>in> zip>(>self>.chromosome, TARGET):> >if> gs !>=> gt: fitness>+>=> 1> >return> fitness> > # Driver code> def> main():> >global> POPULATION_SIZE> > >#current generation> >generation>=> 1> > >found>=> False> >population>=> []> > ># create initial population> >for> _>in> range>(POPULATION_SIZE):> >gnome>=> Individual.create_gnome()> >population.append(Individual(gnome))> > >while> not> found:> > ># sort the population in increasing order of fitness score> >population>=> sorted>(population, key>=> lambda> x:x.fitness)> > ># if the individual having lowest fitness score ie.> ># 0 then we know that we have reached to the target> ># and break the loop> >if> population[>0>].fitness <>=> 0>:> >found>=> True> >break> > ># Otherwise generate new offsprings for new generation> >new_generation>=> []> > ># Perform Elitism, that mean 10% of fittest population> ># goes to the next generation> >s>=> int>((>10>*>POPULATION_SIZE)>/>100>)> >new_generation.extend(population[:s])> > ># From 50% of fittest population, Individuals> ># will mate to produce offspring> >s>=> int>((>90>*>POPULATION_SIZE)>/>100>)> >for> _>in> range>(s):> >parent1>=> random.choice(population[:>50>])> >parent2>=> random.choice(population[:>50>])> >child>=> parent1.mate(parent2)> >new_generation.append(child)> > >population>=> new_generation> > >print>(>'Generation: {} String: {} Fitness: {}'>.> >format>(generation,> >''.join(population[>0>].chromosome),> >population[>0>].fitness))> > >generation>+>=> 1> > > >print>(>'Generation: {} String: {} Fitness: {}'>.> >format>(generation,> >''.join(population[>0>].chromosome),> >population[>0>].fitness))> > if> __name__>=>=> '__main__'>:> >main()>

>

mb en gb

>

C#




using> System;> using> System.Collections.Generic;> using> System.Linq;> > public> class> GeneticAlgorithm> {> >// Number of individuals in each generation> >private> const> int> POPULATION_SIZE = 100;> > >// Valid Genes> >private> const> string> GENES =>'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP'> +> >'QRSTUVWXYZ 1234567890, .-;:_!'#%&/()=?@${[]}'>;> > >// Target string to be generated> >private> const> string> TARGET =>'I love techcodeview.com'>;> > >private> static> readonly> Random random =>new> Random();> > >// Function to generate random numbers in given range> >private> static> int> RandomNum(>int> start,>int> end)> >{> >return> random.Next(start, end + 1);> >}> > >// Create random genes for mutation> >private> static> char> MutatedGenes()> >{> >int> len = GENES.Length;> >int> r = RandomNum(0, len - 1);> >return> GENES[r];> >}> > >// Create chromosome or string of genes> >private> static> string> CreateGnome()> >{> >int> len = TARGET.Length;> >char>[] gnome =>new> char>[len];> >for> (>int> i = 0; i { gnome[i] = MutatedGenes(); } return new string(gnome); } // Class representing individual in population private class Individual { public string Chromosome { get; } public int Fitness { get; } public Individual(string chromosome) { Chromosome = chromosome; Fitness = CalculateFitness(); } // Calculate fitness score, it is the number of // characters in string which differ from target string. private int CalculateFitness() { return Chromosome.Zip(TARGET, (a, b) =>a == b ? 0: 1).Suma(); } // Realizar apareamiento y producir nueva descendencia public Individual Mate(Individual parent2) { char[] childChromosome = new char[Chromosome.Length]; para (int i = 0; i { doble p = aleatorio.NextDouble(); si (p<0.45) childChromosome[i] = Chromosome[i]; else if (p <0.90) childChromosome[i] = parent2.Chromosome[i]; else childChromosome[i] = MutatedGenes(); } return new Individual(new string(childChromosome)); } } // Overloading private class FitnessComparer : IComparer { public int Compare(Individual ind1, Individual ind2) { return ind1.Fitness.CompareTo(ind2.Fitness); } } // Driver code public static void Main() { // current generation int generation = 0; List population = new List(); bool found = false; // create initial population for (int i = 0; i { string gnome = CreateGnome(); population.Add(new Individual(gnome)); } while (!found) { // sort the population in increasing order of fitness score population.Sort(new FitnessComparer()); // if the individual having lowest fitness score ie. // 0 then we know that we have reached the target // and break the loop if (population[0].Fitness == 0) { found = true; break; } // Otherwise generate new offsprings for new generation List newGeneration = new List(); // Perform Elitism, that means 10% of fittest population // goes to the next generation int s = (10 * POPULATION_SIZE) / 100; for (int i = 0; i newGeneration.Add(population[i]); // From 50% of fittest population, Individuals // will mate to produce offspring s = (90 * POPULATION_SIZE) / 100; for (int i = 0; i { int len = population.Count; int r = RandomNum(0, 50); Individual parent1 = population[r]; r = RandomNum(0, 50); Individual parent2 = population[r]; Individual offspring = parent1.Mate(parent2); newGeneration.Add(offspring); } population = newGeneration; Console.WriteLine('Generation: ' + generation + ' ' + 'String: ' + population[0].Chromosome + ' ' + 'Fitness: ' + population[0].Fitness); generation++; } Console.WriteLine('Generation: ' + generation + ' ' + 'String: ' + population[0].Chromosome + ' ' + 'Fitness: ' + population[0].Fitness); } }>

>

>

JavaScript


árbol binario vs bst



// Number of individuals in each generation> const POPULATION_SIZE = 100;> > // Valid Genes> const GENES =>'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP'> +> >'QRSTUVWXYZ 1234567890, .-;:_!'#%&/()=?@${[]}'>;> > // Target string to be generated> const TARGET =>'I love techcodeview.com'>;> > // Function to generate random numbers in given range> function> RandomNum(start, end) {> >return> Math.floor(Math.random() * (end - start + 1)) + start;> }> > // Create random genes for mutation> function> MutatedGenes() {> >let len = GENES.length;> >let r = RandomNum(0, len - 1);> >return> GENES.charAt(r);> }> > // Create chromosome or string of genes> function> CreateGnome() {> >let len = TARGET.length;> >let gnome =>''>;> >for> (let i = 0; i gnome += MutatedGenes(); } return gnome; } // Class representing individual in population class Individual { constructor(chromosome) { this.Chromosome = chromosome; this.Fitness = this.CalculateFitness(); } // Calculate fitness score, it is the number of // characters in string which differ from target string. CalculateFitness() { let fitness = 0; for (let i = 0; i FitnessComparer.Compare(a, b)); // si el individuo tiene el puntaje de condición física más bajo, es decir. // 0 entonces sabemos que hemos alcanzado el objetivo // y rompemos el ciclo if (población[0].Fitness === 0) { found = true; romper; } // De lo contrario, generamos nuevos descendientes para la nueva generación let newGeneration = []; // Realizar elitismo, eso significa que el 10% de la población más apta // pasa a la siguiente generación let s = Math.floor((10 * POPULATION_SIZE) / 100); for (let i = 0; i newGeneration.push(population[i]); // Del 50% de la población más apta, los individuos // se aparearán para producir descendencia s = Math.floor((90 * POPULATION_SIZE) / 100); para (sea i = 0; deje r = RandomNum(0, 50); deje padre1 = población[r]; r = RandomNum(0, 50); deje padre2 = población[r]; deje descendencia = padre1.Mate( parent2); newGeneration.push(offspring); } población = newGeneration; console.log('Generación: ' + generación + ' ' + 'Cadena: ' + población[0].Cromosoma + ' ' + 'Fitness: ' + población[0].Fitness++ } console.log('Generación: ' + generación + ' ' + 'String: ' + población[0].Cromosoma + ' ' + 'Fitness: ' + población[0].Fitness } // Ejecuta la función principal Main()>'>);

> 

Producción:

Generation: 1 String: tO{'-?=jH[k8=B4]Oe@} Fitness: 18 Generation: 2 String: tO{'-?=jH[k8=B4]Oe@} Fitness: 18 Generation: 3 String: .#lRWf9k_Ifslw #O$k_ Fitness: 17 Generation: 4 String: .-1Rq?9mHqk3Wo]3rek_ Fitness: 16 Generation: 5 String: .-1Rq?9mHqk3Wo]3rek_ Fitness: 16 Generation: 6 String: A#ldW) #lIkslw cVek) Fitness: 14 Generation: 7 String: A#ldW) #lIkslw cVek) Fitness: 14 Generation: 8 String: (, o x _x%Rs=, 6Peek3 Fitness: 13  .   .   .  Generation: 29 String: I lope Geeks#o, Geeks Fitness: 3 Generation: 30 String: I loMe GeeksfoBGeeks Fitness: 2 Generation: 31 String: I love Geeksfo0Geeks Fitness: 1 Generation: 32 String: I love Geeksfo0Geeks Fitness: 1 Generation: 33 String: I love Geeksfo0Geeks Fitness: 1 Generation: 34 String: I love techcodeview.com Fitness: 0>

Nota: El algoritmo cada vez comienza con cadenas aleatorias, por lo que la salida puede diferir

Como podemos ver en el resultado, nuestro algoritmo a veces se atasca en una solución óptima local; esto se puede mejorar aún más actualizando el algoritmo de cálculo de la puntuación de aptitud o ajustando los operadores de mutación y cruce.

¿Por qué utilizar algoritmos genéticos?

  • son robustos
  • Proporcionar optimización en estados de espacio grande.
  • A diferencia de la IA tradicional, no se rompen ante un ligero cambio en la entrada o la presencia de ruido.

Aplicación de algoritmos genéticos

Los algoritmos genéticos tienen muchas aplicaciones, algunas de ellas son:

  • Red neuronal recurrente
  • Pruebas de mutación
  • descifrar código
  • Filtrado y procesamiento de señales.
  • Aprender una base de reglas difusa, etc.