se nos da un Número de Fibonacci . Los primeros números de Fibonacci son 0 1 1 2 3 5 8 13 21 34 55 89 144 .....
Tenemos que encontrar el índice del número de Fibonacci dado, es decir, como el número de Fibonacci 8 está en el índice 6.
cómo cerrar el modo desarrollador
Ejemplos:
Input : 13
Output : 7
Input : 34
Output : 9
Método 1 (sencillo) : Un enfoque simple es encontrar números de Fibonacci hasta los números de Fibonacci dados y contar el número de iteraciones realizadas.
C++
// A simple C++ program to find index of given // Fibonacci number. #include int findIndex(int n) { // if Fibonacci number is less than 2 // its index will be same as number if (n <= 1) return n; int a = 0 b = 1 c = 1; int res = 1; // iterate until generated fibonacci number // is less than given fibonacci number while (c < n) { c = a + b; // res keeps track of number of generated // fibonacci number res++; a = b; b = c; } return res; } // Driver program to test above function int main() { int result = findIndex(21); printf('%dn' result); } // This code is contributed by Saket Kumar
Java // A simple Java program to find index of // given Fibonacci number. import java.io.*; class GFG { static int findIndex(int n) { // if Fibonacci number is less // than 2 its index will be // same as number if (n <= 1) return n; int a = 0 b = 1 c = 1; int res = 1; // iterate until generated fibonacci // number is less than given // fibonacci number while (c < n) { c = a + b; // res keeps track of number of // generated fibonacci number res++; a = b; b = c; } return res; } // Driver program to test above function public static void main (String[] args) { int result = findIndex(21); System.out.println( result); } } // This code is contributed by anuj_67.
Python3 # A simple Python 3 program to find # index of given Fibonacci number. def findIndex(n) : # if Fibonacci number is less than 2 # its index will be same as number if (n <= 1) : return n a = 0 b = 1 c = 1 res = 1 # iterate until generated fibonacci number # is less than given fibonacci number while (c < n) : c = a + b # res keeps track of number of # generated fibonacci number res = res + 1 a = b b = c return res # Driver program to test above function result = findIndex(21) print(result) # this code is contributed by Nikita Tiwari
C# // A simple C# program to // find index of given // Fibonacci number. using System; class GFG { static int findIndex(int n) { // if Fibonacci number // is less than 2 its // index will be same // as number if (n <= 1) return n; int a = 0 b = 1 c = 1; int res = 1; // iterate until generated // fibonacci number is less // than given fibonacci number while (c < n) { c = a + b; // res keeps track of // number of generated // fibonacci number res++; a = b; b = c; } return res; } // Driver Code public static void Main () { int result = findIndex(21); Console.WriteLine(result); } } // This code is contributed // by anuj_67.
JavaScript <script> // A simple Javascript program to // find index of given // Fibonacci number. function findIndex(n) { // If Fibonacci number // is less than 2 its // index will be same // as number if (n <= 1) return n; let a = 0 b = 1 c = 1; let res = 1; // Iterate until generated // fibonacci number is less // than given fibonacci number while (c < n) { c = a + b; // res keeps track of // number of generated // fibonacci number res++; a = b; b = c; } return res; } // Driver code let result = findIndex(21); document.write(result); // This code is contributed by decode2207 </script>
PHP // A simple PHP program to // find index of given // Fibonacci number. function findIndex($n) { // if Fibonacci number // is less than 2 // its index will be // same as number if ($n <= 1) return $n; $a = 0; $b = 1; $c = 1; $res = 1; // iterate until generated // fibonacci number // is less than given // fibonacci number while ($c < $n) { $c = $a + $b; // res keeps track of // number of generated // fibonacci number $res++; $a = $b; $b = $c; } return $res; } // Driver Code $result = findIndex(21); echo($result); // This code is contributed by Ajit. ?> Producción
8
Método 2 (basado en fórmulas)
Pero aquí necesitábamos generar todos los números de Fibonacci hasta un número de Fibonacci proporcionado. Pero existe una solución rápida a este problema. ¡Veamos cómo! Tenga en cuenta que calcular el registro de un número es una operación O(1) en la mayoría de las plataformas.
El número de Fibonacci se describe como
F n = 1 / sqrt(5) (pow(an) - pow(bn)) donde
a = 1/2 (1 + raíz cuadrada (5)) y b = 1/2 (1 - raíz cuadrada (5))
Al despreciar pow(b n), que es muy pequeña debido al gran valor de n, obtenemos
n = ronda { 2,078087 * log(Fn) + 1,672276 }
dónde redondo significa redondear al número entero más cercano.
A continuación se muestra la implementación de la idea anterior.
C++// C++ program to find index of given Fibonacci // number #include int findIndex(int n) { float fibo = 2.078087 * log(n) + 1.672276; // returning rounded off value of index return round(fibo); } // Driver program to test above function int main() { int n = 55; printf('%dn' findIndex(n)); }
Java // A simple Java program to find index of given // Fibonacci number public class Fibonacci { static int findIndex(int n) { float fibo = 2.078087F * (float) Math.log(n) + 1.672276F; // returning rounded off value of index return Math.round(fibo); } public static void main(String[] args) { int result = findIndex(55); System.out.println(result); } }
Python3 # Python 3 program to find index of given Fibonacci # number import math def findIndex(n) : fibo = 2.078087 * math.log(n) + 1.672276 # returning rounded off value of index return round(fibo) # Driver program to test above function n = 21 print(findIndex(n)) # This code is contributed by Nikita Tiwari.
C# // A simple C# program to find // index of given Fibonacci number using System; class Fibonacci { static int findIndex(int n) { float fibo = 2.078087F * (float) Math.Log(n) + 1.672276F; // returning rounded off value of index return (int)(Math.Round(fibo)); } // Driver code public static void Main() { int result = findIndex(55); Console.Write(result); } } // This code is contributed by nitin mittal
JavaScript <script> // A simple Javascript program to find // index of given Fibonacci number function findIndex(n) { var fibo = 2.078087 * parseFloat(Math.log(n)) + 1.672276; // Returning rounded off value of index return Math.round(fibo); } // Driver code var result = findIndex(55); document.write(result); // This code is contributed by Ankita saini </script>
PHP // PHP program to find index // of given Fibonacci Number function findIndex($n) { $fibo = 2.078087 * log($n) + 1.672276; // returning rounded off // value of index return round($fibo); } // Driver code $n = 55; echo(findIndex($n)); // This code is contributed by Ajit. ?> Producción
10
Complejidad del tiempo :O(1)
Espacio auxiliar :O(1)
Acercarse:
Podemos resolver este problema usando la fórmula para el enésimo número de Fibonacci que es:
F(n) = (pow((1+sqrt(5))/2 n) - pow((1-sqrt(5))/2 n)) / sqrt(5)
Podemos derivar el índice de un número de Fibonacci dado usando esta fórmula. Podemos iterar sobre los valores de n y calcular el número de Fibonacci correspondiente usando la fórmula anterior hasta que encontremos un número de Fibonacci que sea mayor o igual al número dado. En este punto podemos devolver el índice del número de Fibonacci que coincide con el número dado.
A continuación se muestra la implementación del enfoque anterior:
C++#include #include using namespace std; int findIndex(int n) { double phi = (1 + sqrt(5)) / 2; int index = round(log(n * sqrt(5) + 0.5) / log(phi)); int fib = round((pow(phi index) - pow(1 - phi index)) / sqrt(5)); if (fib == n) return index; else return -1; // n is not a Fibonacci number } int main() { int n = 34; int index = findIndex(n); cout << 'The index of ' << n << ' is ' << index << endl; return 0; }
Java //Java code for the above approach import java.util.*; public class FibonacciIndex { public static int findIndex(int n) { double phi = (1 + Math.sqrt(5)) / 2; int index = (int) Math.round(Math.log(n * Math.sqrt(5) + 0.5) / Math.log(phi)); int fib = (int) Math.round((Math.pow(phi index) - Math.pow(1 - phi index)) / Math.sqrt(5)); if (fib == n) return index; else return -1; // n is not a Fibonacci number } public static void main(String[] args) { int n = 34; int index = findIndex(n); System.out.println('The index of ' + n + ' is ' + index); } }
Python3 import math def find_index(n): phi = (1 + math.sqrt(5)) / 2 index = round(math.log(n * math.sqrt(5) + 0.5) / math.log(phi)) fib = round((math.pow(phi index) - math.pow(1 - phi index)) / math.sqrt(5)) if fib == n: return index else: return -1 # n is not a Fibonacci number def main(): n = 34 index = find_index(n) print(f'The index of {n} is {index}') if __name__ == '__main__': main()
C# using System; class Program { // Function to find the index of a number in the Fibonacci sequence static int FindIndex(int n) { double phi = (1 + Math.Sqrt(5)) / 2; // Golden ratio // Calculate the index using the formula for Fibonacci numbers int index = (int)Math.Round(Math.Log(n * Math.Sqrt(5) + 0.5) / Math.Log(phi)); // Calculate the Fibonacci number at the found index int fib = (int)Math.Round((Math.Pow(phi index) - Math.Pow(1 - phi index)) / Math.Sqrt(5)); // Check if the calculated Fibonacci number is equal to n if (fib == n) return index; else return -1; // n is not a Fibonacci number } static void Main() { int n = 34; int index = FindIndex(n); Console.WriteLine('The index of ' + n + ' is ' + index); } }
JavaScript // Function to find the index of a number in the Fibonacci sequence function findIndex(n) { const phi = (1 + Math.sqrt(5)) / 2; const index = Math.round(Math.log(n * Math.sqrt(5) + 0.5) / Math.log(phi)); const fib = Math.round((Math.pow(phi index) - Math.pow(1 - phi index)) / Math.sqrt(5)); if (fib === n) { return index; } else { return -1; // n is not a Fibonacci number } } // Main function to test the findIndex function function main() { const n = 34; const index = findIndex(n); console.log('The index of ' + n + ' is ' + index); } main();
Producción
The index of 34 is 9
Complejidad del tiempo: O(1) ya que implica sólo unas pocas operaciones aritméticas.
Complejidad espacial: O(1) ya que utiliza sólo una cantidad constante de memoria para almacenar las variables.
Este artículo es una contribución de Aditya Kumar .