Dada una cadena, averigüe si la cadena es K-Palindrome o no. Una cadena K-palíndromo se transforma en un palíndromo al eliminarle como máximo k caracteres.
Ejemplos:
añadiendo cadena en java
Input : String - abcdecba k = 1 Output : Yes String can become palindrome by removing 1 character i.e. either d or e Input : String - abcdeca K = 2 Output : Yes Can become palindrome by removing 2 characters b and e (or b and d). Input : String - acdcb K = 1 Output : No String can not become palindrome by removing only one character.
Práctica recomendada K-palíndromo ¡Pruébalo!
Hemos discutido una solución DP en anterior post donde vimos que el problema es básicamente una variación de Editar distancia problema. En esta publicación se analiza otra solución DP interesante.
La idea es encontrar la subsecuencia palindrómica más larga de la cadena dada. Si la diferencia entre la subsecuencia palindrómica más larga y la cadena original es menor que k entonces la cadena es k-palíndromo; de lo contrario, no es k-palíndromo.
Por ejemplo, la subsecuencia palindrómica más larga de una cuerda. abcdeca es acdca (o aceca). Los caracteres que no contribuyen a la subsecuencia palindrómica más larga de la cadena deben eliminarse para formar la cadena palíndromo. Entonces, al eliminar b y d (o e) de la cadena abcdeca, se transformará en un palíndromo.
La subsecuencia palindrómica más larga de una cuerda se puede encontrar fácilmente usando LCS . A continuación se muestra la solución de dos pasos para encontrar la subsecuencia palindrómica más larga que utiliza LCS.
- Invierta la secuencia dada y almacene lo inverso en otra matriz, digamos rev[0..n-1]
- LCS de la secuencia dada y rev[] será la secuencia palindrómica más larga.
A continuación se muestra la implementación de la idea anterior:
// C++ program to find if given string is K-Palindrome // or not #include using namespace std; /* Returns length of LCS for X[0..m-1] Y[0..n-1] */ int lcs( string X string Y int m int n ) { int L[m + 1][n + 1]; /* Following steps build L[m+1][n+1] in bottom up fashion. Note that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] */ for (int i = 0; i <= m; i++) { for (int j = 0; j <= n; j++) { if (i == 0 || j == 0) L[i][j] = 0; else if (X[i - 1] == Y[j - 1]) L[i][j] = L[i - 1][j - 1] + 1; else L[i][j] = max(L[i - 1][j] L[i][j - 1]); } } // L[m][n] contains length of LCS for X and Y return L[m][n]; } // find if given string is K-Palindrome or not bool isKPal(string str int k) { int n = str.length(); // Find reverse of string string revStr = str; reverse(revStr.begin() revStr.end()); // find longest palindromic subsequence of // given string int lps = lcs(str revStr n n); // If the difference between longest palindromic // subsequence and the original string is less // than equal to k then the string is k-palindrome return (n - lps <= k); } // Driver program int main() { string str = 'abcdeca'; int k = 2; isKPal(str k) ? cout << 'Yes' : cout << 'No'; return 0; }
Java // Java program to find if given // String is K-Palindrome or not import java.util.*; import java.io.*; class GFG { /* Returns length of LCS for X[0..m-1] Y[0..n-1] */ static int lcs(String X String Y int m int n) { int L[][] = new int[m + 1][n + 1]; /* Following steps build L[m+1][n+1] in bottom up fashion. Note that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] */ for (int i = 0; i <= m; i++) { for (int j = 0; j <= n; j++) { if (i == 0 || j == 0) { L[i][j] = 0; } else if (X.charAt(i - 1) == Y.charAt(j - 1)) { L[i][j] = L[i - 1][j - 1] + 1; } else { L[i][j] = Math.max(L[i - 1][j] L[i][j - 1]); } } } // L[m][n] contains length // of LCS for X and Y return L[m][n]; } // find if given String is // K-Palindrome or not static boolean isKPal(String str int k) { int n = str.length(); // Find reverse of String StringBuilder revStr = new StringBuilder(str); revStr = revStr.reverse(); // find longest palindromic // subsequence of given String int lps = lcs(str revStr.toString() n n); // If the difference between longest // palindromic subsequence and the // original String is less than equal // to k then the String is k-palindrome return (n - lps <= k); } // Driver code public static void main(String[] args) { String str = 'abcdeca'; int k = 2; if (isKPal(str k)) { System.out.println('Yes'); } else System.out.println('No'); } } // This code is contributed by Rajput-JI
Python3 # Python program to find # if given string is K-Palindrome # or not # Returns length of LCS # for X[0..m-1] Y[0..n-1] def lcs(X Y m n ): L = [[0]*(n+1) for _ in range(m+1)] # Following steps build # L[m+1][n+1] in bottom up # fashion. Note that L[i][j] # contains length of # LCS of X[0..i-1] and Y[0..j-1] for i in range(m+1): for j in range(n+1): if not i or not j: L[i][j] = 0 elif X[i - 1] == Y[j - 1]: L[i][j] = L[i - 1][j - 1] + 1 else: L[i][j] = max(L[i - 1][j] L[i][j - 1]) # L[m][n] contains length # of LCS for X and Y return L[m][n] # find if given string is # K-Palindrome or not def isKPal(string k): n = len(string) # Find reverse of string revStr = string[::-1] # find longest palindromic # subsequence of # given string lps = lcs(string revStr n n) # If the difference between # longest palindromic # subsequence and the original # string is less # than equal to k then # the string is k-palindrome return (n - lps <= k) # Driver program string = 'abcdeca' k = 2 print('Yes' if isKPal(string k) else 'No') # This code is contributed # by Ansu Kumari.
C# // C# program to find if given // String is K-Palindrome or not using System; class GFG { /* Returns length of LCS for X[0..m-1] Y[0..n-1] */ static int lcs(String X String Y int m int n) { int []L = new int[m + 1n + 1]; /* Following steps build L[m+1n+1] in bottom up fashion. Note that L[ij] contains length of LCS of X[0..i-1] and Y[0..j-1] */ for (int i = 0; i <= m; i++) { for (int j = 0; j <= n; j++) { if (i == 0 || j == 0) { L[i j] = 0; } else if (X[i - 1] == Y[j - 1]) { L[i j] = L[i - 1 j - 1] + 1; } else { L[i j] = Math.Max(L[i - 1 j] L[i j - 1]); } } } // L[mn] contains length // of LCS for X and Y return L[m n]; } // find if given String is // K-Palindrome or not static bool isKPal(String str int k) { int n = str.Length; // Find reverse of String str = reverse(str); // find longest palindromic // subsequence of given String int lps = lcs(str str n n); // If the difference between longest // palindromic subsequence and the // original String is less than equal // to k then the String is k-palindrome return (n - lps <= k); } static String reverse(String input) { char[] temparray = input.ToCharArray(); int left right = 0; right = temparray.Length - 1; for (left = 0; left < right; left++ right--) { // Swap values of left and right char temp = temparray[left]; temparray[left] = temparray[right]; temparray[right] = temp; } return String.Join(''temparray); } // Driver code public static void Main(String[] args) { String str = 'abcdeca'; int k = 2; if (isKPal(str k)) { Console.WriteLine('Yes'); } else Console.WriteLine('No'); } } // This code is contributed by PrinciRaj1992
JavaScript <script> // JavaScript program to find // if given string is K-Palindrome // or not // Returns length of LCS // for X[0..m-1] Y[0..n-1] function lcs(X Y m n ){ let L = new Array(m+1); for(let i=0;i<m+1;i++){ L[i] = new Array(n+1).fill(0); } // Following steps build // L[m+1][n+1] in bottom up // fashion. Note that L[i][j] // contains length of // LCS of X[0..i-1] and Y[0..j-1] for(let i = 0; i < m + 1; i++) { for(let j = 0; j < n + 1; j++) { if(!i || !j) L[i][j] = 0 else if(X[i - 1] == Y[j - 1]) L[i][j] = L[i - 1][j - 1] + 1 else L[i][j] = Math.max(L[i - 1][j] L[i][j - 1]) } } // L[m][n] contains length // of LCS for X and Y return L[m][n] } // find if given string is // K-Palindrome or not function isKPal(string k){ let n = string.length // Find reverse of string let revStr = string.split('').reverse().join('') // find longest palindromic // subsequence of // given string let lps = lcs(string revStr n n) // If the difference between // longest palindromic // subsequence and the original // string is less // than equal to k then // the string is k-palindrome return (n - lps <= k) } // Driver program let string = 'abcdeca' let k = 2 document.write(isKPal(string k)?'Yes' : 'No') // This code is contributed by shinjanpatra </script>
Producción
Yes
Complejidad del tiempo de la solución anterior es O(n2).
Espacio auxiliar utilizado por el programa es O(n2). Se puede reducir aún más a O (n) usando Solución optimizada para el espacio de LCS .
Gracias a Barranco que estrechaste por sugerir la solución anterior.