Dado que un conjunto de elementos encuentra qué permutación de estos elementos daría como resultado el peor de los casos de fusión.
La clasificación de fusión asintóticamente siempre lleva el tiempo O (n log n), pero los casos que requieren más comparaciones generalmente toman más tiempo en la práctica. Básicamente, necesitamos encontrar una permutación de elementos de entrada que conduzcan a un número máximo de comparaciones cuando se clasifiquen utilizando un algoritmo de clasificación de fusión típico.
si no si no si java
Ejemplo:
Consider the below set of elements
{1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16}
Below permutation of the set causes 153
comparisons.
{1 9 5 13 3 11 7 15 2 10 6
14 4 12 8 16}
And an already sorted permutation causes
30 comparisons.
Ahora, ¿cómo obtener el peor de la entrada de casos para la clasificación de fusiones para un conjunto de entrada?
Permítanos tratar de construir la matriz de abajo hacia arriba
Deje que la matriz ordenada sea {12345678}.
Para generar el peor caso de fusión, clasifique la operación de fusión que resultó en una matriz ordenada anteriormente debería dar lugar a las comparaciones máximas. Para hacerlo, la sub-array izquierda y derecha involucrada en la operación de fusión debe almacenar elementos alternativos de matriz ordenada. es decir, la subrainal izquierda debe ser {1357} y la sub-array derecha debe ser {2468}. Ahora, cada elemento de matriz se comparará al menos una vez y eso dará como resultado las máximas comparaciones. Aplicamos la misma lógica para la sub-array de izquierda y derecha también. Para la matriz {1357} El peor de los casos será cuando su sub-array izquierda y derecha sea {15} y {37} respectivamente y para la matriz {2468} El peor caso ocurrirá para {24} y {68}.
responder en java
Algoritmo completo -
GenerateWorstCase (arr [])
- Cree dos matrices auxiliares de izquierda a derecha y almacene elementos de matriz alternativos en ellos.
- Llame GenerateWorstCase para la subarrray izquierda: GenerateWorstCase (izquierda)
- Llame GenerateWorstCase para la subarray correcta: GenerateWorstCase (derecha)
- Copie todos los elementos de los subarrías izquierdo y derecho a la matriz original.
A continuación se muestra la implementación de la idea
C++// C++ program to generate Worst Case // of Merge Sort #include using namespace std; // Function to print an array void printArray(int A[] int size) { for(int i = 0; i < size; i++) { cout << A[i] << ' '; } cout << endl; } // Function to join left and right subarray int join(int arr[] int left[] int right[] int l int m int r) { int i; for(i = 0; i <= m - l; i++) arr[i] = left[i]; for(int j = 0; j < r - m; j++) { arr[i + j] = right[j]; } } // Function to store alternate elements in // left and right subarray int split(int arr[] int left[] int right[] int l int m int r) { for(int i = 0; i <= m - l; i++) left[i] = arr[i * 2]; for(int i = 0; i < r - m; i++) right[i] = arr[i * 2 + 1]; } // Function to generate Worst Case // of Merge Sort int generateWorstCase(int arr[] int l int r) { if (l < r) { int m = l + (r - l) / 2; // Create two auxiliary arrays int left[m - l + 1]; int right[r - m]; // Store alternate array elements // in left and right subarray split(arr left right l m r); // Recurse first and second halves generateWorstCase(left l m); generateWorstCase(right m + 1 r); // Join left and right subarray join(arr left right l m r); } } // Driver code int main() { // Sorted array int arr[] = { 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 }; int n = sizeof(arr) / sizeof(arr[0]); cout << 'Sorted array is n'; printArray(arr n); // Generate Worst Case of Merge Sort generateWorstCase(arr 0 n - 1); cout << 'nInput array that will result ' << 'in worst case of merge sort is n'; printArray(arr n); return 0; } // This code is contributed by Mayank Tyagi
C // C program to generate Worst Case of Merge Sort #include #include // Function to print an array void printArray(int A[] int size) { for (int i = 0; i < size; i++) printf('%d ' A[i]); printf('n'); } // Function to join left and right subarray int join(int arr[] int left[] int right[] int l int m int r) { int i; // Used in second loop for (i = 0; i <= m - l; i++) arr[i] = left[i]; for (int j = 0; j < r - m; j++) arr[i + j] = right[j]; } // Function to store alternate elements in left // and right subarray int split(int arr[] int left[] int right[] int l int m int r) { for (int i = 0; i <= m - l; i++) left[i] = arr[i * 2]; for (int i = 0; i < r - m; i++) right[i] = arr[i * 2 + 1]; } // Function to generate Worst Case of Merge Sort int generateWorstCase(int arr[] int l int r) { if (l < r) { int m = l + (r - l) / 2; // create two auxiliary arrays int left[m - l + 1]; int right[r - m]; // Store alternate array elements in left // and right subarray split(arr left right l m r); // Recurse first and second halves generateWorstCase(left l m); generateWorstCase(right m + 1 r); // join left and right subarray join(arr left right l m r); } } // Driver code int main() { // Sorted array int arr[] = { 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 }; int n = sizeof(arr) / sizeof(arr[0]); printf('Sorted array is n'); printArray(arr n); // generate Worst Case of Merge Sort generateWorstCase(arr 0 n - 1); printf('nInput array that will result in ' 'worst case of merge sort is n'); printArray(arr n); return 0; }
Java // Java program to generate Worst Case of Merge Sort import java.util.Arrays; class GFG { // Function to join left and right subarray static void join(int arr[] int left[] int right[] int l int m int r) { int i; for (i = 0; i <= m - l; i++) arr[i] = left[i]; for (int j = 0; j < r - m; j++) arr[i + j] = right[j]; } // Function to store alternate elements in left // and right subarray static void split(int arr[] int left[] int right[] int l int m int r) { for (int i = 0; i <= m - l; i++) left[i] = arr[i * 2]; for (int i = 0; i < r - m; i++) right[i] = arr[i * 2 + 1]; } // Function to generate Worst Case of Merge Sort static void generateWorstCase(int arr[] int l int r) { if (l < r) { int m = l + (r - l) / 2; // create two auxiliary arrays int[] left = new int[m - l + 1]; int[] right = new int[r - m]; // Store alternate array elements in left // and right subarray split(arr left right l m r); // Recurse first and second halves generateWorstCase(left l m); generateWorstCase(right m + 1 r); // join left and right subarray join(arr left right l m r); } } // driver program public static void main (String[] args) { // sorted array int arr[] = { 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 }; int n = arr.length; System.out.println('Sorted array is'); System.out.println(Arrays.toString(arr)); // generate Worst Case of Merge Sort generateWorstCase(arr 0 n - 1); System.out.println('nInput array that will result in n'+ 'worst case of merge sort is n'); System.out.println(Arrays.toString(arr)); } } // Contributed by Pramod Kumar
Python # Python program to generate Worst Case of Merge Sort # Function to join left and right subarray def join(arr left right l m r): i = 0; for i in range(m-l+1): arr[i] = left[i]; i+=1; for j in range(r-m): arr[i + j] = right[j]; # Function to store alternate elements in left # and right subarray def split(arr left right l m r): for i in range(m-l+1): left[i] = arr[i * 2]; for i in range(r-m): right[i] = arr[i * 2 + 1]; # Function to generate Worst Case of Merge Sort def generateWorstCase(arr l r): if (l < r): m = l + (r - l) // 2; # create two auxiliary arrays left = [0 for i in range(m - l + 1)]; right = [0 for i in range(r-m)]; # Store alternate array elements in left # and right subarray split(arr left right l m r); # Recurse first and second halves generateWorstCase(left l m); generateWorstCase(right m + 1 r); # join left and right subarray join(arr left right l m r); # driver program if __name__ == '__main__': # sorted array arr = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]; n = len(arr); print('Sorted array is'); print(arr); # generate Worst Case of Merge Sort generateWorstCase(arr 0 n - 1); print('nInput array that will result in n' + 'worst case of merge sort is '); print(arr); # This code contributed by shikhasingrajput
C# // C# program to generate Worst Case of // Merge Sort using System; class GFG { // Function to join left and right subarray static void join(int []arr int []left int []right int l int m int r) { int i; for (i = 0; i <= m - l; i++) arr[i] = left[i]; for (int j = 0; j < r - m; j++) arr[i + j] = right[j]; } // Function to store alternate elements in // left and right subarray static void split(int []arr int []left int []right int l int m int r) { for (int i = 0; i <= m - l; i++) left[i] = arr[i * 2]; for (int i = 0; i < r - m; i++) right[i] = arr[i * 2 + 1]; } // Function to generate Worst Case of // Merge Sort static void generateWorstCase(int []arr int l int r) { if (l < r) { int m = l + (r - l) / 2; // create two auxiliary arrays int[] left = new int[m - l + 1]; int[] right = new int[r - m]; // Store alternate array elements // in left and right subarray split(arr left right l m r); // Recurse first and second halves generateWorstCase(left l m); generateWorstCase(right m + 1 r); // join left and right subarray join(arr left right l m r); } } // driver program public static void Main () { // sorted array int []arr = { 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 }; int n = arr.Length; Console.Write('Sorted array isn'); for(int i = 0; i < n; i++) Console.Write(arr[i] + ' '); // generate Worst Case of Merge Sort generateWorstCase(arr 0 n - 1); Console.Write('nInput array that will ' + 'result in n worst case of' + ' merge sort is n'); for(int i = 0; i < n; i++) Console.Write(arr[i] + ' '); } } // This code is contributed by Smitha
JavaScript <script> // javascript program to generate Worst Case // of Merge Sort // Function to print an array function printArray(Asize) { for(let i = 0; i < size; i++) { document.write(A[i] + ' '); } } // Function to join left and right subarray function join(arrleftrightlmr) { let i; for(i = 0; i <= m - l; i++) arr[i] = left[i]; for(let j = 0; j < r - m; j++) { arr[i + j] = right[j]; } } // Function to store alternate elements in // left and right subarray function split(arrleftrightlmr) { for(let i = 0; i <= m - l; i++) left[i] = arr[i * 2]; for(let i = 0; i < r - m; i++) right[i] = arr[i * 2 + 1]; } // Function to generate Worst Case // of Merge Sort function generateWorstCase(arrlr) { if (l < r) { let m = l + parseInt((r - l) / 2 10); // Create two auxiliary arrays let left = new Array(m - l + 1); let right = new Array(r - m); left.fill(0); right.fill(0); // Store alternate array elements // in left and right subarray split(arr left right l m r); // Recurse first and second halves generateWorstCase(left l m); generateWorstCase(right m + 1 r); // Join left and right subarray join(arr left right l m r); } } let arr = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ]; let n = arr.length; document.write('Sorted array is' + ''); printArray(arr n); // Generate Worst Case of Merge Sort generateWorstCase(arr 0 n - 1); document.write('' + 'Input array that will result ' + 'in worst case of merge sort is' + ''); printArray(arr n); // This code is contributed by vaibhavrabadiya117. </script>
Producción:
Sorted array is
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Input array that will result in worst
case of merge sort is
1 9 5 13 3 11 7 15 2 10 6 14 4 12 8 16
Complejidad del tiempo: O (N logn)
Espacio auxiliar: o (n)
Referencias - Desbordamiento de la pila