Dada una matriz llegar[] y un numero entero k la tarea es contar todos los subarreglos cuya suma es divisible por k .
Ejemplos:
Aporte: arreglo[] = [4 5 0 -2 -3 1] k = 5
Producción: 7
Explicación: Hay 7 subarreglos cuya suma es divisible por 5: [4 5 0 -2 -3 1] [5] [5 0] [5 0 -2 -3] [0] [0 -2 -3] y [-2 -3].Aporte: arreglo[] = [2 2 2 2 2 2] k = 2
Producción: 21
Explicación: Todas las sumas de subarreglos son divisibles por 2.Aporte: arreglo[] = [-1 -3 2] k = 5
Producción:
Explicación: No existe ningún subarreglo cuya suma sea divisible por k.
Tabla de contenido
- [Enfoque ingenuo] Iterando sobre todos los subarreglos
- [Enfoque esperado] Uso del módulo de suma de prefijos k
[Enfoque ingenuo] Iterando sobre todos los subarreglos
La idea es iterar sobre todos los subarreglos posibles mientras se mantiene el seguimiento de los suma del subarreglo módulo k . Para cualquier subarreglo, si el módulo sub del subarreglo k se vuelve 0, incremente el recuento en 1. Después de iterar sobre todos los subarreglos, devuelva el recuento como resultado.
C++// C++ Code to Count Subarrays With Sum Divisible By K // by iterating over all possible subarrays #include #include using namespace std; int subCount(vector<int> &arr int k) { int n = arr.size() res = 0; // Iterating over starting indices of subarray for(int i = 0; i < n; i++) { int sum = 0; // Iterating over ending indices of subarray for(int j = i; j < n; j++) { sum = (sum + arr[j]) % k; if(sum == 0) res += 1; } } return res; } int main() { vector<int> arr = {4 5 0 -2 -3 1}; int k = 5; cout << subCount(arr k); }
C // C Code to Count Subarrays With Sum Divisible By K // by iterating over all possible subarrays #include int subCount(int arr[] int n int k) { int res = 0; // Iterating over starting indices of subarray for (int i = 0; i < n; i++) { int sum = 0; // Iterating over ending indices of subarray for (int j = i; j < n; j++) { sum = (sum + arr[j]) % k; if (sum == 0) res += 1; } } return res; } int main() { int arr[] = {4 5 0 -2 -3 1}; int k = 5; int n = sizeof(arr) / sizeof(arr[0]); printf('%d' subCount(arr n k)); return 0; }
Java // Java Code to Count Subarrays With Sum Divisible By K // by iterating over all possible subarrays import java.util.*; class GfG { static int subCount(int[] arr int k) { int n = arr.length res = 0; // Iterating over starting indices of subarray for (int i = 0; i < n; i++) { int sum = 0; // Iterating over ending indices of subarray for (int j = i; j < n; j++) { sum = (sum + arr[j]) % k; if (sum == 0) res += 1; } } return res; } public static void main(String[] args) { int[] arr = {4 5 0 -2 -3 1}; int k = 5; System.out.println(subCount(arr k)); } }
Python # Python Code to Count Subarrays With Sum Divisible By K # by iterating over all possible subarrays def subCount(arr k): n = len(arr) res = 0 # Iterating over starting indices of subarray for i in range(n): sum = 0 # Iterating over ending indices of subarray for j in range(i n): sum = (sum + arr[j]) % k if sum == 0: res += 1 return res if __name__ == '__main__': arr = [4 5 0 -2 -3 1] k = 5 print(subCount(arr k))
C# // C# Code to Count Subarrays With Sum Divisible By K // by iterating over all possible subarrays using System; using System.Collections.Generic; class GfG { static int subCount(int[] arr int k) { int n = arr.Length res = 0; // Iterating over starting indices of subarray for (int i = 0; i < n; i++) { int sum = 0; // Iterating over ending indices of subarray for (int j = i; j < n; j++) { sum = (sum + arr[j]) % k; if (sum == 0) res += 1; } } return res; } static void Main() { int[] arr = { 4 5 0 -2 -3 1 }; int k = 5; Console.WriteLine(subCount(arr k)); } }
JavaScript // JavaScript Code to Count Subarrays With Sum Divisible By K // by iterating over all possible subarrays function subCount(arr k) { let n = arr.length res = 0; // Iterating over starting indices of subarray for (let i = 0; i < n; i++) { let sum = 0; // Iterating over ending indices of subarray for (let j = i; j < n; j++) { sum = (sum + arr[j]) % k; if (sum === 0) res += 1; } } return res; } // Driver Code let arr = [4 5 0 -2 -3 1]; let k = 5; console.log(subCount(arr k));
Producción
7
Complejidad del tiempo: O(n^2) ya que estamos iterando sobre todos los puntos iniciales y finales posibles de los subarreglos.
Espacio Auxiliar: O(1)
[Enfoque esperado] Uso del módulo de suma de prefijos k
La idea es utilizar Técnica de suma de prefijos junto con hash . Al observar con atención, podemos decir que si un subarreglo arr[i...j] tiene una suma divisible por k, entonces (prefijo suma[i] % k) será igual a (prefijo suma[j] % k). Por lo tanto, podemos iterar sobre arr[] mientras mantenemos un mapa hash o un diccionario para contar el número de (prefijo suma mod k). Para cada índice i, el número de subarreglos que terminan en i y cuya suma es divisible por k será igual al recuento de apariciones de (prefijo suma[i] mod k) antes de i.
Nota: El valor negativo de (prefijo suma mod k) debe manejarse por separado en lenguajes como C++ Java DO# y javascript mientras que en Pitón (prefijo suma mod k) es siempre un valor no negativo ya que toma el signo del divisor que es k .
C++// C++ Code to Count Subarrays With Sum Divisible By K // using Prefix Sum and Hash map #include #include #include using namespace std; int subCount(vector<int> &arr int k) { int n = arr.size() res = 0; unordered_map<int int> prefCnt; int sum = 0; // Iterate over all ending points for(int i = 0; i < n; i++) { // prefix sum mod k (handling negative prefix sum) sum = ((sum + arr[i]) % k + k) % k; // If sum == 0 then increment the result by 1 // to count subarray arr[0...i] if(sum == 0) res += 1; // Add count of all starting points for index i res += prefCnt[sum]; prefCnt[sum] += 1; } return res; } int main() { vector<int> arr = {4 5 0 -2 -3 1}; int k = 5; cout << subCount(arr k); }
Java // Java Code to Count Subarrays With Sum Divisible By K // using Prefix Sum and Hash map import java.util.*; class GfG { static int subCount(int[] arr int k) { int n = arr.length res = 0; Map<Integer Integer> prefCnt = new HashMap<>(); int sum = 0; // Iterate over all ending points for (int i = 0; i < n; i++) { // prefix sum mod k (handling negative prefix sum) sum = ((sum + arr[i]) % k + k) % k; // If sum == 0 then increment the result by 1 // to count subarray arr[0...i] if (sum == 0) res += 1; // Add count of all starting points for index i res += prefCnt.getOrDefault(sum 0); prefCnt.put(sum prefCnt.getOrDefault(sum 0) + 1); } return res; } public static void main(String[] args) { int[] arr = {4 5 0 -2 -3 1}; int k = 5; System.out.println(subCount(arr k)); } }
Python # Python Code to Count Subarrays With Sum Divisible By K # using Prefix Sum and Dictionary from collections import defaultdict def subCount(arr k): n = len(arr) res = 0 prefCnt = defaultdict(int) sum = 0 # Iterate over all ending points for i in range(n): sum = (sum + arr[i]) % k # If sum == 0 then increment the result by 1 # to count subarray arr[0...i] if sum == 0: res += 1 # Add count of all starting points for index i res += prefCnt[sum] prefCnt[sum] += 1 return res if __name__ == '__main__': arr = [4 5 0 -2 -3 1] k = 5 print(subCount(arr k))
C# // C# Code to Count Subarrays With Sum Divisible By K // using Prefix Sum and Hash map using System; using System.Collections.Generic; class GfG { static int SubCount(int[] arr int k) { int n = arr.Length res = 0; Dictionary<int int> prefCnt = new Dictionary<int int>(); int sum = 0; // Iterate over all ending points for (int i = 0; i < n; i++) { // prefix sum mod k (handling negative prefix sum) sum = ((sum + arr[i]) % k + k) % k; // If sum == 0 then increment the result by 1 // to count subarray arr[0...i] if (sum == 0) res += 1; // Add count of all starting points for index i if (prefCnt.ContainsKey(sum)) res += prefCnt[sum]; if (prefCnt.ContainsKey(sum)) prefCnt[sum] += 1; else prefCnt[sum] = 1; } return res; } static void Main() { int[] arr = { 4 5 0 -2 -3 1 }; int k = 5; Console.WriteLine(SubCount(arr k)); } }
JavaScript // JavaScript Code to Count Subarrays With Sum Divisible By K // using Prefix Sum and Hash map function subCount(arr k) { let n = arr.length res = 0; let prefCnt = new Map(); let sum = 0; // Iterate over all ending points for (let i = 0; i < n; i++) { // prefix sum mod k (handling negative prefix sum) sum = ((sum + arr[i]) % k + k) % k; // If sum == 0 then increment the result by 1 // to count subarray arr[0...i] if (sum === 0) res += 1; // Add count of all starting points for index i res += (prefCnt.get(sum) || 0); prefCnt.set(sum (prefCnt.get(sum) || 0) + 1); } return res; } // Driver Code let arr = [4 5 0 -2 -3 1]; let k = 5; console.log(subCount(arr k));
Producción
7
Complejidad del tiempo: O(n) ya que estamos iterando sobre la matriz solo una vez.
Espacio Auxiliar: O(min(n k)) como máximo k Las claves pueden estar presentes en el mapa hash o en el diccionario.