logo

Conteo de paralelogramos en un plano.

Dados algunos puntos en un plano que son distintos y no hay tres de ellos que se encuentren en la misma recta. Necesitamos encontrar el número de paralelogramos con los vértices como puntos dados. Ejemplos:

Input : points[] = {(0 0) (0 2) (2 2) (4 2) (1 4) (3 4)} Output : 2 Two Parallelograms are possible by choosing above given point as vertices which are shown in below diagram.

Podemos resolver este problema usando una propiedad especial de los paralelogramos de que las diagonales de un paralelogramo se cortan entre sí en el medio. Entonces, si obtenemos un punto medio que es el punto medio de más de un segmento de línea, entonces podemos concluir que existe un paralelogramo con mayor precisión. Si un punto medio ocurre x veces, entonces se pueden elegir diagonales de posibles paralelogramos enincógnitado2formas, es decir, habrá x*(x-1)/2 paralelogramos correspondientes a este punto medio particular con una frecuencia x. Entonces iteramos sobre todos los pares de puntos y calculamos su punto medio y aumentamos la frecuencia del punto medio en 1. Al final contamos el número de paralelogramos de acuerdo con la frecuencia de cada punto medio distinto como se explicó anteriormente. Como solo necesitamos la frecuencia del punto medio, la división por 2 se ignora al calcular el punto medio por simplicidad. 

CPP
// C++ program to get number of Parallelograms we // can make by given points of the plane #include    using namespace std; // Returns count of Parallelograms possible // from given points int countOfParallelograms(int x[] int y[] int N) {  // Map to store frequency of mid points  map<pair<int int> int> cnt;  for (int i=0; i<N; i++)  {  for (int j=i+1; j<N; j++)  {  // division by 2 is ignored to get  // rid of doubles  int midX = x[i] + x[j];  int midY = y[i] + y[j];  // increase the frequency of mid point  cnt[make_pair(midX midY)]++;  }  }  // Iterating through all mid points  int res = 0;  for (auto it = cnt.begin(); it != cnt.end(); it++)  {  int freq = it->second;  // Increase the count of Parallelograms by  // applying function on frequency of mid point  res += freq*(freq - 1)/2;  }  return res; } // Driver code to test above methods int main() {  int x[] = {0 0 2 4 1 3};  int y[] = {0 2 2 2 4 4};  int N = sizeof(x) / sizeof(int);  cout << countOfParallelograms(x y N) << endl;  return 0; } 
Java
/*package whatever //do not write package name here */ import java.io.*; import java.util.*; public class GFG {    // Returns count of Parallelograms possible  // from given points  public static int countOfParallelograms(int[] x int[] y int N)  {  // Map to store frequency of mid points  HashMap<String Integer> cnt = new HashMap<>();  for (int i=0; i<N; i++)  {  for (int j=i+1; j<N; j++)  {  // division by 2 is ignored to get  // rid of doubles  int midX = x[i] + x[j];  int midY = y[i] + y[j];  // increase the frequency of mid point  String temp = String.join(' ' String.valueOf(midX) String.valueOf(midY));  if(cnt.containsKey(temp)){  cnt.put(temp cnt.get(temp) + 1);  }  else{  cnt.put(temp 1);  }  }  }  // Iterating through all mid points  int res = 0;  for (Map.Entry<String Integer> it : cnt.entrySet()) {  int freq = it.getValue();  // Increase the count of Parallelograms by  // applying function on frequency of mid point  res = res + freq*(freq - 1)/2;  }  return res;  }    public static void main(String[] args) {  int[] x = {0 0 2 4 1 3};  int[] y = {0 2 2 2 4 4};  int N = x.length;  System.out.println(countOfParallelograms(x y N));  } } // The code is contributed by Nidhi goel.  
Python3
# python program to get number of Parallelograms we # can make by given points of the plane # Returns count of Parallelograms possible # from given points def countOfParallelograms(x y N): # Map to store frequency of mid points cnt = {} for i in range(N): for j in range(i+1 N): # division by 2 is ignored to get # rid of doubles midX = x[i] + x[j]; midY = y[i] + y[j]; # increase the frequency of mid point if ((midX midY) in cnt): cnt[(midX midY)] += 1 else: cnt[(midX midY)] = 1 # Iterating through all mid points res = 0 for key in cnt: freq = cnt[key] # Increase the count of Parallelograms by # applying function on frequency of mid point res += freq*(freq - 1)/2 return res # Driver code to test above methods x = [0 0 2 4 1 3] y = [0 2 2 2 4 4] N = len(x); print(int(countOfParallelograms(x y N))) # The code is contributed by Gautam goel.  
C#
using System; using System.Collections.Generic; public class GFG {  // Returns count of Parallelograms possible  // from given points  public static int CountOfParallelograms(int[] x int[] y int N)  {  // Map to store frequency of mid points  Dictionary<string int> cnt = new Dictionary<string int>();  for (int i = 0; i < N; i++)  {  for (int j = i + 1; j < N; j++)  {  // division by 2 is ignored to get  // rid of doubles  int midX = x[i] + x[j];  int midY = y[i] + y[j];  // increase the frequency of mid point  string temp = string.Join(' ' midX.ToString() midY.ToString());  if (cnt.ContainsKey(temp))  {  cnt[temp]++;  }  else  {  cnt.Add(temp 1);  }  }  }  // Iterating through all mid points  int res = 0;  foreach (KeyValuePair<string int> it in cnt)  {  int freq = it.Value;  // Increase the count of Parallelograms by  // applying function on frequency of mid point  res += freq * (freq - 1) / 2;  }  return res;  }  public static void Main(string[] args)  {  int[] x = { 0 0 2 4 1 3 };  int[] y = { 0 2 2 2 4 4 };  int N = x.Length;  Console.WriteLine(CountOfParallelograms(x y N));  } } 
JavaScript
// JavaScript program to get number of Parallelograms we // can make by given points of the plane // Returns count of Parallelograms possible // from given points function countOfParallelograms(x y N) {  // Map to store frequency of mid points  // map int> cnt;  let cnt = new Map();  for (let i=0; i<N; i++)  {  for (let j=i+1; j<N; j++)  {  // division by 2 is ignored to get  // rid of doubles  let midX = x[i] + x[j];  let midY = y[i] + y[j];  // increase the frequency of mid point  let make_pair = [midX midY];  if(cnt.has(make_pair.join(''))){  cnt.set(make_pair.join('') cnt.get(make_pair.join('')) + 1);  }  else{  cnt.set(make_pair.join('') 1);  }  }  }  // Iterating through all mid points  let res = 0;  for (const [key value] of cnt)  {  let freq = value;  // Increase the count of Parallelograms by  // applying function on frequency of mid point  res = res + Math.floor(freq*(freq - 1)/2);  }  return res; } // Driver code to test above methods let x = [0 0 2 4 1 3]; let y = [0 2 2 2 4 4]; let N = x.length; console.log(countOfParallelograms(x y N)); // The code is contributed by Gautam goel (gautamgoel962) 

Producción
2

Complejidad del tiempo: En2logn) mientras iteramos a través de dos bucles hasta n y también usamos un mapa que toma logn.
Espacio Auxiliar: En)



Crear cuestionario