logo

Recoge todas las monedas en un número mínimo de pasos.

Dadas muchas pilas de monedas dispuestas de forma adyacente. Necesitamos recolectar todas estas monedas en la cantidad mínima de pasos donde en un paso podemos recolectar una línea horizontal de monedas o una línea vertical de monedas y las monedas recolectadas deben ser continuas.
Ejemplos:  
 

  Input :   height[] = [2 1 2 5 1] Each value of this array corresponds to the height of stack that is we are given five stack of coins where in first stack 2 coins are there then in second stack 1 coin is there and so on.   Output :   4 We can collect all above coins in 4 steps which are shown in below diagram. Each step is shown by different color. First we have collected last horizontal line of coins after which stacks remains as [1 0 1 4 0] after that another horizontal line of coins is collected from stack 3 and 4 then a vertical line from stack 4 and at the end a horizontal line from stack 1. Total steps are 4.


 

np punto


Podemos resolver este problema usando el método divide y vencerás. Podemos ver que siempre es beneficioso eliminar las líneas horizontales desde abajo. Supongamos que estamos trabajando en pilas desde el índice l hasta el índice r en un paso de recursión, cada vez que elegiremos la altura mínima, eliminaremos esas muchas líneas horizontales, después de lo cual la pila se dividirá en dos partes l hasta el mínimo y el mínimo +1 hasta r y llamaremos recursivamente en esos subarreglos. Otra cosa es que también podemos recolectar monedas usando líneas verticales, por lo que elegiremos el mínimo entre el resultado de llamadas recursivas y (r - l) porque usando (r - l) líneas verticales siempre podemos recolectar todas las monedas. 
Como cada vez que llamamos a cada subarreglo y encontramos el mínimo de ese tiempo total, la complejidad de la solución será O (N2
 



C++
// C++ program to find minimum number of // steps to collect stack of coins #include    using namespace std; // recursive method to collect coins from // height array l to r with height h already // collected int minStepsRecur(int height[] int l int r int h) {  // if l is more than r no steps needed  if (l >= r)  return 0;  // loop over heights to get minimum height  // index  int m = l;  for (int i = l; i < r; i++)  if (height[i] < height[m])  m = i;  /* choose minimum from  1) collecting coins using all vertical  lines (total r - l)  2) collecting coins using lower horizontal  lines and recursively on left and right  segments */  return min(r - l  minStepsRecur(height l m height[m]) +   minStepsRecur(height m + 1 r height[m]) +   height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array int minSteps(int height[] int N) {  return minStepsRecur(height 0 N 0); } // Driver code to test above methods int main() {  int height[] = { 2 1 2 5 1 };  int N = sizeof(height) / sizeof(int);  cout << minSteps(height N) << endl;  return 0; } 
Java
// Java Code to Collect all coins in // minimum number of steps import java.util.*; class GFG {  // recursive method to collect coins from  // height array l to r with height h already  // collected  public static int minStepsRecur(int height[] int l  int r int h)  {  // if l is more than r no steps needed  if (l >= r)  return 0;  // loop over heights to get minimum height  // index  int m = l;  for (int i = l; i < r; i++)  if (height[i] < height[m])  m = i;  /* choose minimum from  1) collecting coins using all vertical  lines (total r - l)  2) collecting coins using lower horizontal  lines and recursively on left and right  segments */  return Math.min(r - l  minStepsRecur(height l m height[m]) +   minStepsRecur(height m + 1 r height[m]) +  height[m] - h);  }  // method returns minimum number of step to  // collect coin from stack with height in  // height[] array  public static int minSteps(int height[] int N)  {  return minStepsRecur(height 0 N 0);  }  /* Driver program to test above function */  public static void main(String[] args)  {  int height[] = { 2 1 2 5 1 };  int N = height.length;  System.out.println(minSteps(height N));  } } // This code is contributed by Arnav Kr. Mandal. 
Python 3
# Python 3 program to find  # minimum number of steps  # to collect stack of coins # recursive method to collect  # coins from height array l to  # r with height h already # collected def minStepsRecur(height l r h): # if l is more than r # no steps needed if l >= r: return 0; # loop over heights to  # get minimum height index m = l for i in range(l r): if height[i] < height[m]: m = i # choose minimum from # 1) collecting coins using  # all vertical lines (total r - l) # 2) collecting coins using  # lower horizontal lines and  # recursively on left and  # right segments  return min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h) # method returns minimum number # of step to collect coin from  # stack with height in height[] array def minSteps(height N): return minStepsRecur(height 0 N 0) # Driver code  height = [ 2 1 2 5 1 ] N = len(height) print(minSteps(height N)) # This code is contributed # by ChitraNayal 
C#
// C# Code to Collect all coins in // minimum number of steps using System; class GFG {  // recursive method to collect coins from  // height array l to r with height h already  // collected  public static int minStepsRecur(int[] height int l  int r int h)  {  // if l is more than r no steps needed  if (l >= r)  return 0;  // loop over heights to  // get minimum height index  int m = l;  for (int i = l; i < r; i++)  if (height[i] < height[m])  m = i;  /* choose minimum from  1) collecting coins using all vertical  lines (total r - l)  2) collecting coins using lower horizontal  lines and recursively on left and right  segments */  return Math.Min(r - l  minStepsRecur(height l m height[m]) +   minStepsRecur(height m + 1 r height[m]) +  height[m] - h);  }  // method returns minimum number of step to  // collect coin from stack with height in  // height[] array  public static int minSteps(int[] height int N)  {  return minStepsRecur(height 0 N 0);  }  /* Driver program to test above function */  public static void Main()  {  int[] height = { 2 1 2 5 1 };  int N = height.Length;  Console.Write(minSteps(height N));  } } // This code is contributed by nitin mittal 
PHP
 // PHP program to find minimum number of // steps to collect stack of coins // recursive method to collect // coins from height array l to  // r with height h already // collected function minStepsRecur($height $l $r $h) { // if l is more than r // no steps needed if ($l >= $r) return 0; // loop over heights to // get minimum height // index $m = $l; for ($i = $l; $i < $r; $i++) if ($height[$i] < $height[$m]) $m = $i; /* choose minimum from  1) collecting coins using   all vertical lines   (total r - l)  2) collecting coins using   lower horizontal lines   and recursively on left  and right segments */ return min($r - $l minStepsRecur($height $l $m $height[$m]) + minStepsRecur($height $m + 1 $r $height[$m]) + $height[$m] - $h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array function minSteps($height $N) { return minStepsRecur($height 0 $N 0); } // Driver Code $height = array(2 1 2 5 1); $N = sizeof($height); echo minSteps($height $N) ; // This code is contributed by nitin mittal. ?> 
JavaScript
<script> // Javascript Code to Collect all coins in // minimum number of steps    // recursive method to collect coins from  // height array l to r with height h already  // collected  function minStepsRecur(heightlrh)  {  // if l is more than r no steps needed  if (l >= r)  return 0;    // loop over heights to get minimum height  // index  let m = l;  for (let i = l; i < r; i++)  if (height[i] < height[m])  m = i;    /* choose minimum from  1) collecting coins using all vertical  lines (total r - l)  2) collecting coins using lower horizontal  lines and recursively on left and right  segments */  return Math.min(r - l  minStepsRecur(height l m height[m]) +   minStepsRecur(height m + 1 r height[m]) +  height[m] - h);  }    // method returns minimum number of step to  // collect coin from stack with height in  // height[] array  function minSteps(heightN)  {  return minStepsRecur(height 0 N 0);  }    /* Driver program to test above function */  let height=[2 1 2 5 1 ];  let N = height.length;  document.write(minSteps(height N));    // This code is contributed by avanitrachhadiya2155 </script> 

Producción:  
 

4

Complejidad del tiempo: La complejidad temporal de este algoritmo es O(N^2) donde N es el número de elementos en la matriz de altura.

Complejidad espacial: La complejidad espacial de este algoritmo es O(N) debido a las llamadas recursivas que se realizan en la matriz de altura.


 

Crear cuestionario